Inverse magnetic catalysis in QCD

Tamás G. Kovács Institute for Nuclear Research, Debrecen

with

Falk Bruckmann and Gergely Endrődi Universität Regensburg

July 31, 2013

Common wisdom: chiral condensate increases with the magnetic field

- Low energy effective models
- First lattice study: D'Elia et al., 2010
- But! Bali et al., 2012 : around *T_c* condensate can decrease
 - Physical quark masses
 - Continuum limit

Dependence of the condensate on the magnetic field

Bali et al. PRD (2012)

• Quark condensate:

$$\langle \bar{\psi}\psi\rangle(B) = \frac{1}{Z}\int dA \,\mathrm{e}^{-S(A)} \underbrace{\det[D(A,B)+m]}_{\text{"sea"}} \underbrace{\mathrm{Tr}\left[(D(A,B)+m)^{-1}\right]}_{\text{"valence"}}$$

- Why does the condensate depend on B?
 - Spectrum of D(A, B) in given gauge backgound changes \rightarrow "valence"
 - Typical gauge field A changes \rightarrow "sea"

Change of Dirac spectral density with B T = 142 MeV, $N_t = 6$, generated with B = 0

- spectral density around zero increases with B
- $\rightarrow \langle \bar{\psi}\psi \rangle$ increases
- \bullet \rightarrow magnetic catalysis

How does *B* influence the gauge fields?

What happens to the gauge field if B is switched on?

How does B influence the gauge fields?

- What happens to the gauge field if B is switched on?
- Polyakov loop increases (gets more ordered)

Why does the Polyakov loop increase with B?

Quark action:

$$S_q = -\log \det(D+m) = -\sum \log (\lambda_i + m)$$

m small

 \rightarrow fluctuations of S_q dominated by small eigenvalues

- Quark action suppresses small Dirac eigenvalues
- Few small eigenvalues ⇔ large Polyakov loop

• $T \ll T_c \rightarrow P \approx 0 \rightarrow \text{many small modes (s}\chi \text{SB)}$

- $T \gg T_c \rightarrow P \approx 1 \rightarrow \lambda_1 \propto T$ (lowest Matsubara mode)
- Quark action prefers large Polyakov loop; switching on *B* enhances this effect

Change in action versus the Polyakov loop Scatter plot of $10^3 \times 4$ lattice configurations around T_c , generated with B = 0

$$\Delta S_q = \log \det(D(\mathbf{0}, A) + m) - \log \det(D(\mathbf{B}, A) + m)$$

The Polyakov loop and the condensate

Condensate:

$$ar{\psi}\psi \approx \sum rac{1}{\lambda_i+m}$$

- $m \text{ small } \rightarrow \text{ dominated by small eigenvalues}$
- $\bullet \ \ \mathsf{P} \ \text{large} \ \ \rightarrow \ \ \mathsf{fewer} \ \mathsf{small} \ \mathsf{eigenvalues}$
- $\bullet \rightarrow$ smaller condensate

Polyakov loop versus quark condensate

Scatter plot of $10^3 \times 4$ lattice configurations around T_c

Competition between "sea" and "valence"

- Magnetic field \rightarrow more small Dirac eigenvalues
- Valence
 - $\bullet \quad \text{More small modes} \ \rightarrow \ \text{larger condensate}$
- Sea
 - suppresses configurations with many small modes
 - suppression enhanced by magnetic field
 - quark condensate decreases
- Sea" and "valence" compete

- T_c cross-over order parameter Polyakov loop
- At T_c Polyakov loop effective potential flat
- Small magnetic field contribution has large ordering effect

- Both catalysis and inverse catalysis depend on small quark modes
- Inverse catalysis: suppression of small Dirac ev's by B in the quark det
- Contribution of *B* in det to the P-loop effective potential becomes important at *T_c*
- $\bullet\,$ Small modes $\,\,\rightarrow\,\,$ sensitive to quark mass