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Why magnetic field?

I Heavy ion collisions produce
strong magnetic fields
(eB ∼ (100MeV)2 ><?)

I Phase diagram of QCD in
magnetic field

I Application in graphene
(valleytronics)

I It’s fun!
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KvBLL Calorons

SU(2) Yang Mills on R3 × S1

β instanton
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My world of 
instanton-monopoles

- Deformed YM, QCD(adj), Large N volume independence (M. 
Unsal, et. al), (S)YM and Confinement (talk by T. Schaefer)

renormalons, etc.
-Monopols on the lattice: E.M. Ilgenfritz, M. Muller-Preusker,

-Models of ChiralSB: P. Faccioli, E. Shuryak, TS
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What motivated this work: Caloron in magnetic field
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What motivated this work: Caloron in magnetic field
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Introduction

I Generation of charge by the interplay of two things
I Combination of two magnetic fields of U(1)(1)× U(2)(1) type
I Chemical potential for one of the charges (say for charge (1))

I This combination would induce a spectrum of fermions which
is charged under (2).

I The origin of this spectrum is rooted in the degeneracy of of
states in magnetic field
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Fermions in 2D

Consider the Dirac equation in (2+1) dimensions

Hψn = Enψλ , H = iσ1Dx + iσ2Dy

Introduce an isospin quantum number, and consider U(1)× U(1)
theory with

Dµ = ∂µ − iAµ − iAµτ3 .
Fermions decouple into two sectors τ3 = ±1.

Now introduce magnetic field B = B + F τ3 and τ3 chemical
potential µ3τ3 so partition function

lnZ =
∑

n,q=±1

gn,q ln(1 + e(qµ3−Eq
n )β)
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Charge catalysis

E

0

Τ3=+1,
particle

Τ3=+1,
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particle

Τ3=-1,
particle
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particle

+μ3

-μ3

|B+F| |-B-F| |B-F| |-B+F|

Q = 2A min(F ,B) tanh(µ3β/2) ,
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Application to graphene

t1
t2

t3

Ax =
1

2
(2t2 � t1 � t3) ,

Ay =

p
3

2
(t3 � t1)

@µ + iAµ ± i

vf
Aµ

Hopping amplitude (localy) different

So-called valley 
index

Btot = B(A) + ⌧3F (A)
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Application in QCD (Caloron revisited)
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Motivation
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Application in QCD (Caloron revisited)

Uniform fields with A0 = vτ3 have

Q = V
iv

(2π)2

{
B B ≤ F
F B > F

(1)

I Charge is imaginary!?

I It rises linearly with B and saturates at B = F

I It vanishes if any of the three B,F or v are zero

I This is because A0 is not a physical field, it is a Lagrange
multiplier enforcing Gauss law.

I Integration over v would yield vanishing charge, however the
effect is still present in charge fluctuations
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The Charge fluctuations in uniform fields F and B

〈
Q2
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v

= (connected) + (disconnected)
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The partition function for uniform fields

Zv = const× e−
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The Charge fluctuations in uniform fields
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Summary

I Two magnetic fields of a U(1)× U(1) theory have nontrivial
properties due to different degenerecies of the two sectors
τ3 = ±1 (charge induction, charge oscillations with magnetic
field/chemical potential, charge halos)

I QCD monopole-antimonopole should exhibit this effect
(lattice calculations of a KvBLL calaron show this explicitly)

I The possibility of “imaginary” charge induced in lattice
configurations which tend to reduce charge fluctuations. (In
the case of uniform fields when F = B it completely kills all
charge fluctuations due to magnetic field).

I Direct application in graphene: induction of charge via valley
chemical potential, and vice versa

I Could this effect be seen in theoretically tractable confining
theories such as QCD(adj) (M. Ünsal et al.)?
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