Magnetic catalysis of (electric) charge

Tin Sulejmanpašić Regensburg University In collaboration with Falk Bruckmann and Pavel Buividovich

arXiv:1303.1710 [hep-th]

Lattice 2013, Mainz

July 31, 2013

1/18

Why magnetic field?

- Heavy ion collisions produce strong magnetic fields (eB ~ (100MeV)² ><?)
- Phase diagram of QCD in magnetic field
- Application in graphene (valleytronics)
- It's fun!

(a)

KvBLL Calorons

KvBLL Calorons

SU(2) Yang Mills on $R^3 \times S^1$

KvBLL Calorons

SU(2) Yang Mills on $R^3 \times S^1$

SU(2) Yang Mills on $R^3 \times S^1$

1 $6^{\circ}_{P}x4, \Phi_{P}=5$ 0.8 $\langle \, j_0(0,\, L/2,\, L/2,\, x_3) \rangle \cdot \, 10^3$ 24 24[°]x4, Φ_BΞ11 24[°]x6, Φ_B=5 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -5 5 10 20 0 15 x₃

▲□ → < E → < E → E → Q ↔
6/18
</p>

Introduction

- Generation of charge by the interplay of two things
 - Combination of two magnetic fields of $U_{(1)}(1) \times U_{(2)}(1)$ type
 - Chemical potential for one of the charges (say for charge (1))
- This combination would induce a spectrum of fermions which is charged under (2).
- The origin of this spectrum is rooted in the degeneracy of of states in magnetic field

Fermions in 2D

Consider the Dirac equation in (2+1) dimensions

$$H\psi_n = E_n \psi_\lambda , \qquad H = i\sigma_1 D_x + i\sigma_2 D_y$$

Introduce an isospin quantum number, and consider $U(1) \times U(1)$ theory with

$${\cal D}_\mu = \partial_\mu - i {\cal A}_\mu - i {\cal A}_\mu au^3$$
 .

Fermions decouple into two sectors $\tau^3 = \pm 1$.

Fermions in 2D

Consider the Dirac equation in (2+1) dimensions

$$H\psi_n = E_n \psi_\lambda , \qquad H = i\sigma_1 D_x + i\sigma_2 D_y$$

Introduce an isospin quantum number, and consider $U(1) \times U(1)$ theory with

$$D_{\mu} = \partial_{\mu} - iA_{\mu} - iA_{\mu} au^3$$
 .

Fermions decouple into two sectors $\tau^3 = \pm 1$. Now introduce magnetic field $\mathcal{B} = B + F\tau^3$ and τ^3 chemical potential $\mu_3\tau^3$ so partition function

$$\ln Z = \sum_{n,q=\pm 1} g_{n,q} \ln(1 + e^{(q\mu_3 - E_n^q)\beta})$$

Charge catalysis

 $Q = 2A \min(F, B) \tanh(\mu_3 \beta/2)$,

Application to graphene

 $A_0 \approx v \tau^3/2$ acts like an *imaginary* μ_3 chemical potential!

Motivation

 $\langle \, j_0(0,\, L/2,\, L/2,\, x_3) \rangle \cdot \, 10^3$

Uniform fields with $A_0 = v\tau^3$ have

$$Q = V \frac{iv}{(2\pi)^2} \begin{cases} B & B \le F \\ F & B > F \end{cases}$$
(1)

- Charge is imaginary!?
- It rises linearly with B and saturates at B = F
- It vanishes if any of the three B, F or v are zero

Uniform fields with $A_0 = v \tau^3$ have

$$Q = V \frac{iv}{(2\pi)^2} \begin{cases} B & B \le F \\ F & B > F \end{cases}$$
(1)

- Charge is imaginary!?
- It rises linearly with B and saturates at B = F
- It vanishes if any of the three B, F or v are zero
- ▶ This is because A₀ is not a physical field, it is a Lagrange multiplier enforcing Gauss law.

Uniform fields with $A_0 = v \tau^3$ have

$$Q = V \frac{iv}{(2\pi)^2} \begin{cases} B & B \le F \\ F & B > F \end{cases}$$
(1)

- Charge is imaginary!?
- It rises linearly with B and saturates at B = F
- It vanishes if any of the three B, F or v are zero
- ► This is because A₀ is not a physical field, it is a Lagrange multiplier enforcing Gauss law.
- Integration over v would yield vanishing charge, however the effect is still present in charge fluctuations

The Charge fluctuations in uniform fields F and B

$$ig \langle Q^2
angle_{v} = (ext{connected}) + (ext{disconnected})$$

For $F > B$
 $ig \langle Q^2
angle_{v} = rac{VT}{\pi^2} F - rac{V^2}{(2\pi)^2} v^2 B$

The partition function for uniform fields

$$Z_{
m v}={
m const} imes e^{-rac{VF}{8\pi^2T}v^2}$$

Averiging over v

$$\left\langle Q^2 \right\rangle = \frac{VT}{\pi^2} F\left[1 - \frac{B^2}{F^2} \right]$$

(ロ)、(型)、(目)、(目)、(目)、(の)、(0)、(16/18)

The Charge fluctuations in uniform fields

Summary

- ► Two magnetic fields of a U(1) × U(1) theory have nontrivial properties due to different degenerecies of the two sectors τ³ = ±1 (charge induction, charge oscillations with magnetic field/chemical potential, charge halos)
- QCD monopole-antimonopole should exhibit this effect (lattice calculations of a KvBLL calaron show this explicitly)
- The possibility of "imaginary" charge induced in lattice configurations which tend to reduce charge fluctuations. (In the case of uniform fields when F = B it completely kills all charge fluctuations due to magnetic field).
- Direct application in graphene: induction of charge via valley chemical potential, and vice versa
- Could this effect be seen in theoretically tractable confining theories such as QCD(adj) (M. Ünsal et al.)?