Non-perturbative renormalization of overlap quark bilinears on domain wall fermion configurations

Zhaofeng Liu

Institute of High Energy Physics, Beijing

July 31 2013, Mainz

⁰with Ying Chen, Shao-Jing Dong, Michael Glatzmaier, Ming Gong, Anyi Li, Keh-Fei Liu, Yi-Bo Yang, Jian-Bo Zhang

- Introduction
- Lattice set up
- Numerical results
- Summary

- \bullet Renormalization constants are needed to convert lattice results to the continuum $\overline{\rm MS}$ scheme.
- For example, quark masses, quark chiral condensate, strangeness content of nucleon etc.
- Overlap and domain wall fermions have good chiral symmetry on the lattice.
- The χ QCD collaboration is using a setup of overlap on 2+1 domain wall configurations for calculations of strangeness in nucleon, strange and charm quark masses (see Yi-Bo Yang's poster) etc.
- The renormalization constants of quark bilinears are being calculated using a non-perturbative scheme (RI/MOM).

RI/MOM

• The renormalization condition in the RI-MOM scheme is [G. Martinelli et al., Nucl. Phys. B **445** (1995) 81]

$$\lim_{m_q\to 0} Z_q^{-1} Z_{\mathcal{O}} \frac{1}{12} \operatorname{Tr}[\Lambda_{\mathcal{O}}(p) \Lambda_{\mathcal{O}}^{tree}(p)^{-1}]_{p^2=\mu^2} = 1,$$

 Z_q is the quark field renormalization constant: $\psi_R = Z_q^{1/2} \psi$, Z_O is the renormalization constant for the operator O: $O_R = Z_O O$, μ is the renormalization scale.

• $\Lambda_{\mathcal{O}}(p)$ is the amputated forward Green function

$$\Lambda_{\mathcal{O}}(p) = S^{-1}(p)G_{\mathcal{O}}(p)S^{-1}(p),$$

where S(p) is the quark propagator.

• The calculation has to be done in a fixed gauge, say, Landau gauge. The method is supposed to work in the window

$$\Lambda_{QCD} \ll \mu \ll \pi/a.$$

• The forward Green's function $G_{\mathcal{O}}(p)$ is computed as

$$\mathcal{G}_{\mathcal{O}}(p) = \sum_{x,y} e^{-ip \cdot (x-y)} \langle \psi(x) \mathcal{O}(0) ar{\psi}(y)
angle$$

by using point source quark propagator $S_i(x, 0)$.

• The quark propagator in momentum space is given by

$$S(p) = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{x} e^{-ip \cdot x} S_i(x, 0) \right]$$

from N configurations.

• For quark bilinears $\bar{\psi}\Gamma\psi'$ with $\Gamma = I, \gamma_5, \gamma_\mu, \gamma_\mu\gamma_5$, $\Lambda_{\mathcal{O}}^{tree}(p) = I, \gamma_5, \gamma_\mu, \gamma_\mu\gamma_5$. • In the RI scheme,

$$Z_q^{RI}(\mu) = \frac{-i}{48} \operatorname{Tr} \left[\gamma_{\nu} \frac{\partial S^{-1}(p)}{\partial p_{\nu}} \right]_{p^2 = \mu^2}$$

• In the RI' scheme, Z_q is given by

$$Z_q^{RI'}(\mu) = rac{1}{12} {
m Tr} \left[S^{-1}(p) S_f^{ov}(p)
ight]_{p^2 = \mu^2},$$

where $S_f^{ov}(p)$ is the free overlap quark propagator.

• We obtain the renormalization constant of the local axial vector current Z_A^{WI} from Ward Identities, which equals to Z_A^{RI} in the RI scheme. Then

$$Z_q^{RI} = Z_A^{WI} rac{1}{12} \mathrm{Tr} \left[\Lambda_A(p) \Lambda_A^{tree}(p)^{-1}
ight]_{p^2 = \mu^2}.$$

Table: Parameters of configurations with 2+1 flavor dynamical domain wall fermions (RBC-UKQCD). [Aoki et al. 2011]

1/ <i>a</i> (GeV)	label	am _{sea}	volume	N _{conf}
1.73(3)	c005	0.005/0.04	$24^3 imes 64$	92
	c01	0.01/0.04	$24^3 imes 64$	88
	c02	0.02/0.04	$24^3 imes 64$	138
2.28(3)	f004	0.004/0.03	$32^{3} \times 64$	50
	f006	0.006/0.03	$32^3 imes 64$	40
	f008	0.008/0.03	$32^3 imes 64$	50

• Eight overlap valence quark masses are used on each lattice.

• The pion masses range from about 220 MeV to about 600 MeV.

Anti-periodic boundary condition in the time direction,

$$\mathsf{ap} = (\frac{(2k_t+1)\pi}{T}, \frac{2\pi k_x}{L}, \frac{2\pi k_y}{L}, \frac{2\pi k_z}{L}),$$

$$L = 24$$
 lattice: $k_{\mu} = -6, -5, ..., 6$
 $L = 32$ lattice: $k_t = -5, -1, ..., 6$ and $k_i = -6, -7, ..., 6$

• To reduce effects of Lorentz non-invariant discretization errors, we only analyze the momenta which satisfy

$$rac{p^{[4]}}{(p^2)^2} < 0.32, \quad ext{where } p^{[4]} = \sum_\mu p^4_\mu, \quad p^2 = \sum_\mu p^2_\mu.$$

• The statistical errors are from Jackknife processes.

Using

$$Z_A \partial_\mu A_\mu = 2 Z_m m_q Z_P P$$

and $Z_m = Z_P^{-1}$ for overlap fermions, one has

$$Z_A \partial_\mu \langle 0 | A_\mu | \pi \rangle = 2 m_q \langle 0 | P | \pi \rangle.$$

If the pion is at rest, then from the above one gets

$$Z_A = rac{2m_q \langle 0|P|\pi
angle}{m_\pi \langle 0|A_4|\pi
angle}.$$

• From 2-point functions $G_{PP}(\vec{p}=0,t) = \sum_{\vec{x}} \langle 0|P(x)P(0)|0 \rangle$ and $G_{A_4P}(\vec{p}=0,t) = \sum_{\vec{x}} \langle 0|A_4(x)P(0)|0 \rangle$, one obtains

$$Z_A = \lim_{m_q o 0, t o \infty} rac{2m_q G_{PP}(ec{p}=0,t)}{m_\pi G_{A_4P}(ec{p}=0,t)}.$$

A straight line fit in am_q ∈ [0.00809, 0.02430] on the coarse lattice.
am_q ∈ [0.00585, 0.01520] on the fine lattice.

- Examples of Z_a^{RI} as a function of the momentum scale.
- Small valence quark mass dependence.
- In Landau gauge, the anomalous dimension at 1-loop is zero.

• To go to the chiral limit, we use the following to fit and take B_s :

$$Z_S = \frac{A_s}{(am_q)^2} + B_s + C_s \cdot (am_q)$$

[Blum et al. 2001, Aoki et al. 2007]

- The conversion ratio from RI to $\overline{\rm MS}$ scheme is to 3-loops. [Chetyrkin and Retey 1999]
- The running of $Z_S^{\overline{\mathrm{MS}}}$ uses anomalous dimension to 4-loops.
- $Z_S = A + B \cdot a^2 p^2$ to extrapolate away $\mathcal{O}(a^2 p^2)$ discretization errors.

• To remove the contamination from the Goldstone bosons, we use the following to fit and take Z_P^{sub} as the chiral limit value:

$$Z_{P}^{-1} = \frac{A_{p}}{am_{q}} + (Z_{P}^{sub})^{-1} + C_{p} \cdot (am_{q})$$

- The conversion from RI to $\overline{\text{MS}}$ scheme and the running of $Z_P^{sub}(\overline{\text{MS}})$ are similar to those of $Z_S^{\overline{\text{MS}}}$.
- $Z_P^{sub} = A + B \cdot a^2 p^2$ to extrapolate away $\mathcal{O}(a^2 p^2)$ discretization errors.

Z_S and Z_P in the light sea quark massless limit

 $Z(m_l^R) = Z(0) + c \cdot m_l^R$, where $m_l^R = (m_l + m_{res})Z_m^{sea}$

ensemble	c005	c01	c02	$m_l^R = 0$
$Z_S^{\overline{\mathrm{MS}}}$ (2 GeV)	1.1433(54)	1.1397(82)	1.1581(74)	1.1308(87)
$Z_P^{\overline{\mathrm{MS}}}$ (2 GeV)	1.164(14)	1.168(22)	1.194(28)	1.141(25)
ensemble	f004	f006	f008	$m_{l}^{R} = 0$
$Z_S^{\overline{\mathrm{MS}}}$ (2 GeV)	1.0607(66)	1.0747(64)	1.077(10)	1.0597(64)
$Z_P^{\overline{\mathrm{MS}}}$ (2 GeV)	1.068(21)	1.093(19)	1.105(24)	1.066(21)

Source	Error (%,L=24)	Error (%,L=32)
Statistical	0.8	0.6
Truncation (RI to $\overline{\mathrm{MS}})$	2.2	2.1
Coupling constant	1.5	1.5
Perturbative running	< 0.02	< 0.02
Lattice spacing	0.5	0.5
Fit range of $a^2 p^2$	0.5	<0.1
Extrapolation in <i>m</i> _l	0.18	1.8
Total	2.9	3.2

- A linear extrapolation of Z_V/Z_A in am_q is used for the chiral limit.
- At large momentum scale $Z_V^{RI}/Z_A^{RI} = 1$, i.e., $Z_V^{RI} = Z_A^{RI}$ is satisfied as expected.

18 / 19

Summary

- Using the RI-MOM scheme, we calculate the renormalization constants for overlap quark bilinears on domain wall configurations.
- $Z_S = Z_P$ and $Z_V = Z_A$ are confirmed as expected.
- The conversion from the RI scheme to the $\overline{\rm MS}$ scheme is the main source of error for Z_S .
- $Z_m = 1/Z_S$ is used for the determination of strange and charm quark masses.
- We find $m_s^{\overline{MS}}(2 \text{ GeV})=0.104(9)$ GeV and $m_c^{\overline{MS}}(2 \text{ GeV})=1.107(38)$ GeV. (See Yi-Bo Yang's poster)

Thank you.