Tight-binding model of graphene with Coulomb interactions Dominik Smith Lorenz von Smekal smith@theorie.ikp.physik.tu-darmstadt.de

TECHNISCHE UNIVERSITÄT DARMSTADT

Dedicated to the memory of Professor Mikhail Polikarpov

1. August 2013 | IKP TUD / SFB 634-D4 | D. Smith, L. Smekal | 1

Introduction

Many properties of graphene are well understood in extreme weak coupling limit.

$$H = \sum_{\langle \mathbf{x}, \mathbf{y} \rangle, \mathbf{s}} (-\kappa) (\mathbf{a}_{\mathbf{x}, \mathbf{s}}^{\dagger} \mathbf{a}_{\mathbf{y}, \mathbf{s}} + \mathbf{a}_{\mathbf{y}, \mathbf{s}}^{\dagger} \mathbf{a}_{\mathbf{x}, \mathbf{s}}) \quad , \ \{\mathbf{a}_{\mu}, \mathbf{a}_{\nu}\} = \{\mathbf{a}_{\mu}^{\dagger}, \mathbf{a}_{\nu}^{\dagger}\} = \mathbf{0} \quad , \ \{\mathbf{a}_{\mu}^{\dagger}, \mathbf{a}_{\nu}\} = \delta_{\mu\nu}$$

- Well described by tight-binding theory.
- Conical dispersion at low energies.
- Low energy effective Dirac theory.
- Van Hove singularity at saddle points.
- Semi-metallic behavior (no band gap).

Phys.Rev.B81:125105.

2010

Include electromagnetic interaction: Low energy theory becomes QED_{2+1} . Simulated with staggered Fermions.

026802 (2009)

Buividovich et al. (ITEP), Phys. Rev. B 86 (2012), 045107

Presently: Go beyond low energies. \rightarrow Simulate hexagons directly.

Introduction

First derivation of path-integral for hexagonal lattice:

Currently: Fight-binding with gauge-links.

Tight-binding with instantaneous interactions.

Brower, Rebbi, Schaich, PoS(Lattice 2011)056

Buividovich, Polikarpov, Phys. Rev. B 86 (2012) 245117

Ulybyshev et al. (ITEP), arXiv:1304.3660

Our goal: Investigate effect of interactions on Van Hove singularity.

Dietz,Smekal et al. arXiv:1304.4764

Status: CUDA code operational and producing. Plausibility checks (find α_c) and cross-checks (ITEP).

Outline

- Interacting tight-binding model with normal-ordering terms (non-compact Hubbard field).
- \blacktriangleright Introducing the compact Hubbard field \longrightarrow results.
- ► Improved Fermion discretization (ITEP) → comparison.

Interacting tight-binding theory

Since $v_F \approx c/300 \ll c$, model interactions by non-local potential (Brower et al.):

$$H = \sum_{\langle x,y \rangle,s} (-\kappa) (a_{x,s}^{\dagger} a_{y,s} + a_{y,s}^{\dagger} a_{x,s}) + \sum_{x,y} e^2 q_x V_{xy} q_y , \quad q_x = a_{x,1}^{\dagger} a_{x,1} + a_{x,-1}^{\dagger} a_{x,-1} - 1$$

Introduce hole operators b_x^{\dagger} , b_x for spin -1 particles:

$$b_x^{\dagger} = a_{x,-1}$$
, $b_x = a_{x,-1}^{\dagger}$, $a_x^{\dagger} = a_{x,+1}^{\dagger}$, $a_x = a_{x,+1} \longrightarrow q_x = a_x^{\dagger}a_x - b_x^{\dagger}b_x$.

Apply normal ordering \rightarrow extra term from potential. Flip sign of b_x^{\dagger} , b_x on one sub-lattice.

$$H = \sum_{\langle x,y \rangle,s} (-\kappa) (a_x^{\dagger} a_y + b_y^{\dagger} b_x + \text{h.c.}) + \sum_{x,y} e^2 : q_x V_{xy} q_y : + \sum_x e^2 V_{xx} (a_x^{\dagger} a_x + b_x^{\dagger} b_x)$$

Add "staggered" mass to break-sublattice symmetry:

$$H
ightarrow H + \sum_{x} m_{S}(a_{x}^{\dagger}a_{x} + b_{x}^{\dagger}b_{x}) \quad (m_{S} \pm m, x \in A, B)$$

^{1.} August 2013 | IKP TUD / SFB 634-D4 | D. Smith, L. Smekal | 5

Functional-integral for interacting theory

Factor the exponential:
$$e^{-\beta H} \approx e^{-\delta H} e^{-\delta H} \dots e^{-\delta H} \qquad \delta = \beta/N_t.$$

Express partition function using coherent states $|\psi_t, \eta_t\rangle$, $\langle \psi_t, \eta_t|$:

$$\begin{aligned} \operatorname{Tr} e^{-\beta H} &= \int \prod_{t=0}^{N_{t}-1} \left[\prod_{x} d\psi_{x,t}^{*} d\psi_{x,t} d\eta_{x,t}^{*} d\eta_{x,t} \right] e^{-\sum_{x} (\psi_{x,t+1}^{*} \psi_{x,t+1} + \eta_{x,t+1}^{*} \eta_{x,t+1})} \langle \psi_{t+1}, \eta_{t+1} | e^{-\delta H} | \psi_{t}, \eta_{t} \rangle . \\ \\ \text{Using } \langle \xi | F(a_{\lambda}^{\dagger}, a_{\lambda}) | \xi' \rangle &= F(\xi_{\lambda}^{*}, \xi_{\lambda}') e^{\sum_{\lambda} \xi_{\lambda}^{*} \xi_{\lambda}'}, \text{ obtain} \\ \\ \operatorname{Tr} e^{-\beta H} &= \int \prod_{t=0}^{N_{t}-1} \left[\prod_{x} d\psi_{x,t}^{*} d\psi_{x,t} d\eta_{x,t}^{*} d\eta_{x,t} \right] \exp \left\{ -\delta \left[\sum_{x,y} e^{2} Q_{x,t+1,t} V_{xy} Q_{y,t+1,t} \right. \\ \left. - \sum_{\langle x,y \rangle} \kappa(\psi_{x,t+1}^{*} \psi_{y,t} + \psi_{y,t+1}^{*} \psi_{x,t} + \eta_{y,t+1}^{*} \eta_{x,t} + \eta_{x,t+1}^{*} \eta_{y,t}) + \sum_{x} m_{S}(\psi_{x,t+1}^{*} \psi_{x,t} + \eta_{x,t+1}^{*} \eta_{x,t}) \\ &+ \sum_{x} e^{2} V_{xx}(\psi_{x,t+1}^{*} \psi_{x,t} + \eta_{x,t+1}^{*} \eta_{x,t}) \right] - \sum_{x} \left[\psi_{x,t+1}^{*} (\psi_{x,t+1} - \psi_{x,t}) + \eta_{x,t+1}^{*} (\eta_{x,t+1} - \eta_{x,t}) \right] \right\}. \end{aligned}$$

where $Q_{x,t,t'} = \psi^*_{x,t}\psi_{x,t'} - \eta^*_{x,t}\eta_{x,t'}$. Antiperiodic in time! Leading error is $\mathcal{O}(\delta)$.

The Hubbard field

Hubbard-Stratonovich transformation eliminates fourth powers:

$$\exp\left(-\delta e^{2} \sum_{x,y} Q_{x,t+1,t} V_{xy} Q_{y,t+1,t}\right) = \left[\det(...)\right]^{1/2} \\ \times \int \prod_{x} \left[\prod_{t=0}^{N_{t}-1} d\phi_{x,t}\right] \exp\left(-\frac{\delta}{4} \sum_{t=0}^{N_{t}-1} \sum_{x,y} \phi_{x,t} V_{xy}^{-1} \phi_{y,t} - i e \delta \sum_{t=0}^{N_{t}-1} \sum_{x} \phi_{x,t} Q_{x,t+1,t}\right).$$

Gaussian integral can be carried out to obtain Fermion determinant

$$\operatorname{Tr} e^{-\beta H} = \int \left[\prod_{t=0}^{N_t-1} \prod_{x} d\phi_{x,t} \right] \exp\left\{ -\frac{\delta}{4} \sum_{t=0}^{N_t-1} \sum_{x,y} \phi_{x,t} V_{xy}^{-1} \phi_{y,t} \right\} \left| \det\left(M + ie\frac{\beta}{N_t} \phi_{x,t} \delta_{xy} \delta_{t-1,t'}\right) \right|^2 M_{(x,t)(y,t')} = \delta_{xy} (\delta_{tt'} - \delta_{t-1,t'}) - \frac{\beta}{N_t} \kappa \sum_{\vec{n}} \delta_{y,x+\vec{n}} \delta_{t-1,t'} + \frac{\beta}{N_t} m_{\mathrm{S}} \delta_{xy} \delta_{t-1,t'} + \frac{\beta}{N_t} e^2 V_{xx} \delta_{xy} \delta_{t-1,t'} \right]^2$$

Suitable for HMC simulations! No sign problem!

^{1.} August 2013 | IKP TUD / SFB 634-D4 | D. Smith, L. Smekal | 7

Hybrid Monte-Carlo for non-compact Hubbard field

Force terms for Hubbard field ϕ and momentum *p*:

$$\frac{d}{d\tau}\phi_{\mathbf{x},t} = p_{\mathbf{x},t}, \quad -\frac{d}{d\tau}p_{\mathbf{x},t} = \frac{\beta}{2N_t}(V^{-1}\phi)_{\mathbf{x},t} - 2\frac{\beta}{N_t}e\operatorname{Im}\left(\chi_{\mathbf{x},t+1}^*(B^{-1}\chi)_{\mathbf{x},t}\right)$$

Order parameter for sub-lattice symmetry breaking ("chiral condensate")

$$\begin{split} \langle \Delta_N \rangle &= \operatorname{Tr} \left[\widehat{\Delta}_N \mathbf{e}^{-\beta H} \right] & \left(B = M + i \mathbf{e} \frac{\beta}{N_t} \phi_{x,t} \delta_{xy} \delta_{t-1,t'} \right) \\ &= \frac{1}{ZN_t} \int \mathcal{D} \psi \mathcal{D} \psi^* \mathcal{D} \eta \mathcal{D} \eta^* \Big[\sum_{X_{A},t} \left(\psi^*_{x,t+1} \psi_{x,t} + \eta^*_{x,t+1} \eta_{x,t} \right) - \sum_{X_{B},t} \left(\psi^*_{x,t+1} \psi_{x,t} + \eta^*_{x,t+1} \eta_{x,t} \right) \Big] \mathbf{e}^{-\beta H} \\ &= \frac{-1}{\beta Z} \int \mathcal{D} \phi \left[\frac{\partial}{\partial m} \det \left(BB^{\dagger} \right) \right] \mathbf{e}^{-S[\phi]} = \frac{-2}{\beta Z} \int \mathcal{D} \phi \det \left(BB^{\dagger} \right) \operatorname{Re} \operatorname{Tr} \left(B^{-1} \frac{dB}{dm} \right) \mathbf{e}^{-S[\phi]} \\ &= \frac{-2}{N_t} \sum_{t=0}^{N_t-1} \langle \sum_{x \in A} B^{-1}_{(x,t+1)(x,t)} - \sum_{x \in B} B^{-1}_{(x,t+1)(x,t)} \rangle \end{split}$$

Doesn't work (no symmetry breaking)! Why??

The compact Hubbard field

No sub-lattice symmetry breaking observed. Possible reason: Non-compact Hubbard field ϕ in Fermion determinant (thanks Maksim Ulybyshev!)

The determinant of $\left(M + ie\frac{\beta}{N_t}\phi_{x,t}\delta_{xy}\delta_{t-1,t'}\right)$ is $\sim \phi^V \longrightarrow$ uncontrollable errors from floating point rounding.

Solution: Use compact Hubbard field instead!

Brower, Rebbi, Schaich, PoS(Lattice 2011)056

Replacement:
$$\left(\frac{\beta}{N_t}e^2 V_{xx}\delta_{xy}\delta_{t-1,t'} + ie\frac{\beta}{N_t}\phi_{x,t}\delta_{xy}\delta_{t-1,t'}\right) \longrightarrow \exp\left(ie\frac{\beta}{N_t}\phi_{x,t}\right)\delta_{xy}\delta_{t-1,t'}$$

Changes Fermion force term:

$$-\frac{d}{d\tau}p_{x,t} = \frac{\beta}{2N_t}(V^{-1}\phi)_{x,t} - 2\frac{\beta}{N_t}e\operatorname{Im}\left(\chi_{x,t+1}^*\exp\left(ie\frac{\beta}{N_t}\phi_{x,t}\right)(B^{-1}\chi)_{x,t}\right)$$

Sub-lattice symmetry breaks!

^{1.} August 2013 | IKP TUD / SFB 634-D4 | D. Smith, L. Smekal | 9

The potential

Constructed piecewise: Constrained random phase approximation (cRPA) at short distances (Wehling et al. PRL 106, 236805 (2011)), Coulomb otherwise. Corrected for periodic boundary (one image in each direction). Differs from ITEP.

Results

Simulating at β = 2.0 on N_x = 6. Extrapolating $N_t \rightarrow \infty$ from N_t = 8, 10, 12, 14, 16. Several hundreds of independent measurements for each set (N_t , α , m).

Limit $m \to 0$ from $\langle \Delta_N \rangle = a_0 + a_1 m + a_2 m^2$. Probably large finite-volume errors! (In progress: Improve V_{xy}^{-1} computation \to larger N_x will be feasible.)

Improved discretization

Error of standard Fermion operator is $\mathcal{O}(\delta)$. Strategy for improvement: **split** Hamiltonian (ITEP).

$$\operatorname{Tr} e^{-\beta H} \approx \operatorname{Tr} \left[e^{-\beta H_{TB}} e^{-\beta H_C} \right] = \int \left[\prod_{t=0}^{2N_t - 1} \prod_x d\psi_{x,t}^* d\psi_{x,t} d\eta_{x,t}^* d\eta_{x,t} \right] \\ \times \left\{ \prod_{t=0}^{N_t - 1} e^{-\sum_x (\psi_{x,2t}^* \psi_{x,2t} + \eta_{x,2t}^* \eta_{x,2t} + \psi_{x,2t+1}^* \psi_{x,2t+1} + \eta_{x,2t+1}^* \eta_{x,2t+1})} \\ \times \langle \psi_{2t}, \eta_{2t} | e^{-\delta H_{TB}} | \psi_{2t+1}, \eta_{2t+1} \rangle \langle \psi_{2t+1}, \eta_{2t+1} | e^{-\delta H_C} | \psi_{2t+2}, \eta_{2t+2} \rangle \right\}$$

Leads to 2nd-order Fermion action:

$$\begin{split} S_{F}[\phi] &= \sum_{t=0}^{N_{t}-1} \left[\sum_{x} \psi_{x,2t}^{*} \left(\psi_{x,2t} - \psi_{x,2t+1} \right) - \delta \kappa \sum_{< x, y >} \left(\psi_{x,2t}^{*} \psi_{y,2t+1} + \psi_{y,2t}^{*} \psi_{x,2t+1} \right) \right. \\ &+ \sum_{x} \psi_{x,2t+1}^{*} \left(\psi_{x,2t+1} - \mathrm{e}^{-i\delta \mathrm{e}\,\phi_{x,t}} \psi_{x,2t+2} \right) + \delta \sum_{x} \pm m \psi_{x,2t}^{*} \psi_{x,2t+1} \right]. \end{split}$$

1. August 2013 | IKP TUD / SFB 634-D4 | D. Smith, L. Smekal | 12

Improved discretization (II)

Improved Fermion matrix:

$$M_{(x,t)(y,t')} = \begin{cases} \delta_{xy}(\delta_{tt'} - \delta_{t+1,t'}) - \frac{\beta}{N_t} \kappa \sum_{\vec{n}} \delta_{y,x+\vec{n}} \delta_{t+1,t'} + \frac{\beta}{N_t} m_{\rm S} \delta_{xy} \delta_{t+1,t'} & : t \text{ even} \\ \delta_{xy} \delta_{tt'} - \delta_{xy} \delta_{t+1,t'} \exp(-i\frac{\beta}{N_t} e\phi_{x,(t-1)/2}) & : t \text{ odd} \end{cases}$$

Hubbard field only on odd timeslices!

HMC force:
$$-\frac{d}{d\tau}p_{x,k} = \frac{\beta}{2N_t}(V^{-1}\phi)_{x,k} - \frac{2\beta}{N_t}e \operatorname{Im}\left(\chi_{x,2k+1}^* \exp\left(i\frac{\beta}{N_t}e\phi_{x,k}\right)(M^{-1}\chi)_{x,2k+2}\right)$$

Order parameter:

$$\begin{split} \langle \Delta_N \rangle \propto \int \mathcal{D}\psi \mathcal{D}\psi^* \mathcal{D}\eta \mathcal{D}\eta^* \big[\sum_{X_{A},t} \left(\psi_{x,2t}^* \psi_{x,2t+1} + \eta_{x,2t}^* \eta_{x,2t+1} \right) - \sum_{X_{B},t} \left(\psi_{x,2t}^* \psi_{x,2t+1} + \eta_{x,2t}^* \eta_{x,2t+1} \right) \big] e^{-\beta h} \\ &= \frac{-1}{\beta Z} \int \mathcal{D}\phi \left[\frac{\partial}{\partial m} \det \left(M M^{\dagger} \right) \right] e^{-S[\phi]} = \frac{-2}{N_t} \sum_{t=0}^{N_t-1} \langle \sum_{x \in A} M_{(x,2t)(x,2t+1)}^{-1} - \sum_{x \in B} M_{(x,2t)(x,2t+1)}^{-1} \rangle \end{split}$$

Operator inserted only on even timeslices! Perhaps a problem...

^{1.} August 2013 | IKP TUD / SFB 634-D4 | D. Smith, L. Smekal | 13

Comparison

 $N_t \rightarrow \infty$ extrapolation for naive and improved Fermion operators.

Within errors no difference. $O(\delta)$ behavior in both cases. Reason currently unknown. Coulomb energy shows similar behavior.

1. August 2013 | IKP TUD / SFB 634-D4 | D. Smith, L. Smekal | 14

Comparison (II)

Similar results for different α . Self-consistency is confirmed, but no improvement...

Conclusion: Much work ahead.