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Message from Yoichi Iwasaki!
!
I am very happy to come back to research activity in 
lattice community after 8 years absence.!
!
However, unfortunately my present health condition 
has not allowed me to travel to Europe.!
!
Ken-ichi Ishikawa will give a talk on behalf of me.!
!
I hope I am able to meet you in New York next year.!
!
Best regards.!
 �
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Objective (this talk)!

Introducing the nomenclature ``conformal theories 
with an IR cutoff”,!
!
Verify the existence of the ‘’conformal region’’ in 
addition to the confining region and the deconfining 
region and clarify the property of the conformal region!
!
�

Objective (for a long term)!

Clarify the whole structure of Conformal theories with 
an IR cutoff and thereby reveal the characteristic of 
each theory !
!
�
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Plan of Talk!

! Propose the nomenclature ‘’Conformal theories 
with an IR cutoff’’!

! Make conjecture based on RG argument!
! Verify the conjecture for various cases!
•  Clarify the structure of the vacuum of the 

conformal region !
•  Clarify the phase structure including the 

conformal region! ��



SU(3) gauge theories with Nf quarks in the fundamental 
representation!
Action: one-plaqutte gauge action + Wilson fermion action!
Nf = 7, 12, 16!
Lattice size: 16^3 x 64!
Boundary conditions: periodic boundary conditions except for an 
anti-periodic boundary conditions in the t direction for fermions!
Algorithm: Blocked HMC for 2N and  RHMC for 1 : Nf=2N + 1!
Statistics: 1,000(500) +1,000(500) trajectories!
Computers: U. Tsukuba: CCS  HAPACS;   KEK: HITAC 16000!

Stage and Tools�
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Nomenclature!
Conformal theories with an IR cutoff !
Theories with an IR fixed point and  with an IR cutoff�

!
!Conformal QCD ( the large         QCD !
! !within the conformal window) with an IR cutoff !

��

Note that all numerical simulations for 
Conformal QCD are with an IR cutoff�
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’’Conformal region'' :!
!
“Conformal behavior”:!
      meson propagator G(t) behaves at large t as!
!

Transition at the boundary of the conformal region 
is first order�

Conjecture:!
 based on RG argument �

	�



Verification of Conjecture�

!Nf=16!
!Nf=7!
!Nf=12�


�
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Structure of the vacuum�
Effective potential  in the one-loop approximation�

Nf=16, mq=0.0005� Nf=16, mq=1.0�

Parametrize the loop of link variables  in spatial directions�

x,&y,&z&direc=ons�
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Z(3) twisted vacuum!

Nf=16, mq=0.0005�
Lowest energy state�

Nf=16, mq < ~ 0.15�

Polyakov loops in spatial directions: Px, Py, Pz�

Locally unstable state�
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Nf=16:Two states at K=0.125: Polyakov loops�

Close to the twisted vacuum,!
But not equal�

characteristic in the  deconfining 
region�
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Verified in the Nf=16 case!

Inside the conformal region�

Outside the conformal region�

Boundary is that between different vacua and 
therefore first order�
�
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Phase structure on a finite lattice: Nf=16�
�
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N_f=7: beta = 6.0: Two states at K=0.1413�
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N_f=7: beta = 6.0: effective masses at K=0.1413�
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Phase structure on a finite lattice: Nf=7 �
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Nf=12: beta=6.0 and beta=8.0!
�

Investigate the state outside the conformal region�

Then, the mq dependence of m_{PS}�

First, Polyakov loops!

���
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Phase structure on a finite lattice: Nf=12�
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Cautious remark�

The mq dependence of m_{PS} outside the conformal 
region is determined by the lattice size and the beta!
!
It is irrelevant to the conformal behavior!
!
In order to obtain conformal properties, one should be 
inside the conformal region!
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Coclusion: Phase structure on a finite lattice�
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Summary�

We have verified !
! The existence of the conformal region in Conformal 

QCD (Nf=7, 12, 16) on a 16^3 x 64 lattice!
!  The vacuum in the conformal region is close to the  

Z(3) twisted vacuum!
!  The boundary between the conformal region and 

the confining (deconfining) region is first order 
transition!

!  The mq dependence of m_{PS} outside the 
conformal region is irrelevant to the conformal 
behavior!

!

�
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Thank you�
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Appendix�
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RG argument�

IRFP UVFP

IRFP UVFP
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Nf=12 inside the conformal region!
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1 vacuum

1.1 Periodic boundary condition

In general quantummechanics, the one-loop corrections to the zero-temperature
vacuum energy (which is same as ±Tr log(D)) is obtained by

E =
∑
boson

EB

2
−

∑
fermion

EF

2
. (1)

The most generic Wilson line (in fundamental rep of SU(3)) would be

Ux = exp(i

∫
Axdx) = diag(ei2πax , ei2πbx , ei2πcx)

Uy = exp(i

∫
Aydy) = diag(ei2πay , ei2πby , ei2πcy )

Uz = exp(i

∫
Azdz) = diag(ei2πaz , ei2πbz , ei2πcz) (2)

with ax + bx + cx = 1 and so on (in general it can be integer) from the
unitary condition. Note that ax = bx = cx = 1

3
, 2
3
gives a non-trivial center

of the gauge group.
For free Wison fermion, the energy can be obtained by

k2[kx, ky, kz ] = (sin(kx)
2 + sin(ky)

2 + sin(kz)
2)

m2[kx, ky, kz ] = (mq + 3− cos(kx)− cos(ky)− cos(kz))
2 (3)

where mq is the quark mass in the action, with the implicit form:

cosh(E[kx, ky , kz]) = 1 +
k2 +m2

2(1 +m)
. (4)

If we do the singular gauge transformation, the Wilson-line can be en-
coded in the twisted boundary condition for the quark field, which in turn
changes momentum quantization in the summation. Therefore the one-loop
potential (note there are three differently colored quarks) is obtained by

−V (!a,!b,!c) =
N−1+ax∑
nx=ax

N−1+ay∑
ny=ay

N−1+az∑
nz=az

E[2πnx/N, 2πny/N, 2πnz/N ]

+
N−1+bx∑
nx=bx

N−1+by∑
ny=by

N−1+bz∑
nz=bz

E[2πnx/N, 2πny/N, 2πnz/N ]

1



+
N−1+cx∑
nx=cx

N−1+cy∑
ny=cy

N−1+cz∑
nz=cz

E[2πnx/N, 2πny/N, 2πnz/N ] . (5)

The summation is taken for nx = ax, ax + 1, ax + 2, · · · . In the figure, I
subtracted V (0, 0, 0) since the absolute value is unphysical.

The gauge field contribution can be estimated as follow. For SU(3),
the adjoint representation (octet) of the gauge group obtains the shift of
momentum in (a− b), (b−a), (c−a), (a− c), (b− c), (c− b), 0, 0. This can be
understood as follows. Set Aµ = A0

µ+δAµ, where A0
µ is the background field

that gives the specified Wilson line. The gauge transformation is given by
A0

µ → U †A0
µU+U †∂µU and δAµ → U †δAµU (with ψ → Uψ for fundamental

matter). Now, we use the singular gauge transformation to get rid of A0
µ.

Then the matrix U acts as the twisted boundary condition for the fluctuation
δAµ (and matter field ψ), which transforms as adjoint representation of
the gauge group. This leads to the above mentioned shift of momentum.
The path integral over δAµ gives the one-loop energy from the one-loop
determinant (it is instructive to see that when a = b = c = 1/3, there is no
contribution to the potential due to center symmetry).

One can compute the one-loop shift of energy (vacuum energy) by using
the similar formula to the above by the momentum shift for the adjoint
representation.

+V (%a,%b,%c) =
N−1+ax−bx∑
nx=ax−bx

N−1+ay−by∑
ny=ay−by

N−1+az−bz∑
nz=az−bz

E[2πnx/N, 2πny/N, 2πnz/N ] + · · · .

(6)

Here E(%k) should be determined from the pole of the propagator of the
gauge fields. I used massless limit of (4) in the potential computation.

The effective energy in terms of (ax, by) is shown in Fig.??? The mini-
mum is at (ax = 1/3, by = 1/3).

1.2 Antiperiodic boundary condition

We could instead use the anti-periodic boundary condition for the quarks.
With the above Wilson line introduced, the one-loop potential for quark
fields becomes

−V (%a,%b,%c) =

N−1+ax+1/2∑
nx=ax+1/2

N−1+ay+1/2∑
ny=ay+1/2

N−1+az+1/2∑
nz=az+1/2

E[2πnx/N, 2πny/N, 2πnz/N ]

2



+

N−1+bx+1/2∑
nx=bx+1/2

N−1+by+1/2∑
ny=by+1/2

N−1+bz+1/2∑
nz=bz+1/2

E[2πnx/N, 2πny/N, 2πnz/N ]

+

N−1+cx+1/2∑
nx=cx+1/2

N−1+cy+1/2∑
ny=cy+1/2

N−1+cz+1/2∑
nz=cz+1/2

E[2πnx/N, 2πny/N, 2πnz/N ] .

(7)

The one-loop potential from gauge field does not change. We realize that
ai = bi = ci = 0 is the minimum of the total potential (by computing the
potential with mathematica).
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