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•EW baryogenesis in Technicolor models
Appelquist, Schwetz and Selipsky, PRD52, 4741 (1995);
Kikukawa, Kohda and Yasuda, PRD77 (2008) 015014

⇒1st order chiral transition

⇒Techni-fermion masses must be lighter than mhcrit

    Pisarski & Wilczek(1984)

⇒ mhcrit gives upper bound on techni-pion mass

⇒compare with LHC

We consider 2(light) + Nf (heavy) flavor QCD as TC.

Introduction



Define mhcrit(ml) as the 
boundary between 1st and 
corssover.

1st order ⇔ mh < mhcrit

First goal: Identify mhcrit(ml)
mhcrit(0) ⇔ mhTCP

In other words, search for 
tricritical point

Expected Colombia plot for 2+Nf QCD
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Mean field analysis:

ml ~ [mhTCP − mhcrit(ml)] 5/2

The power 5/2 is independent of Nf.
  ⇒  Able to test this universal scaling
        with 2+Nf-flavor QCD
        (LargerNf has a great advantage.)
  ⇒  Feedback on real (2+1) QCD

Tricritical point



•Starting from 2(light)-flavor configurations, incorporate 
the determinant of Nf (heavy) flavors by re-weighting.

Re-weighting with HPE

Strategy I: Re-weightingEQUATIONS

N. YAMADA

Z(β, mf , µf ) =

∫
DUDψDψ̄ e−Sq−Sg =

∫
DU e6βNsiteP̂

Nf+2∏

f=1

(det M(mf , µf )),(1)

w(P, β,mf , µf ) =

∫
DUDψDψ̄ δ(P − P̂ ) e−Sq−Sg

=

∫
DU δ(P − P̂ ) e6βNsiteP̂

Nf+2∏

f=1

(det M(mf , µf )),(2)

where, δ(x) is the delta function, Sg and Sq are the gauge and quark action,
respectively, and M the quark matrix. Nsite ≡ N3

s × Nt is the number of sites.
The lattice bare parameter β = 6/g2

0 is chosen such that the simulation point is
close to the transition point. P̂ is the (generalized) plaquette defined by P̂ =
−Sg/(6Nsiteβ). Normalizing eq. (2) by the partition function, Z=

∫
w(P )dP , gives

the histogram for P̂ . We take the standard plaquette gauge action in this work,
thus P̂ is the plaquette averaged over the whole sites. for the standard plaquette
gauge action, and is a linear combination of Wilson loops for improved gauge
actions. The effective potential is then given by

Veff(P, β, mf , µf ) = − ln w(P, β,mf , µf ).(3)

We consider QCD with two degenerate light quaks of the mass ml and Nf heavy
ones with mh. Furthermore, we let the two light quarks have a small chemical po-
tential µ. Then, taking a first few terms in the double expansions around 1/mh=0
and µ/T=0 are validated as an good approximation to eq. (3). To be specific,
defining the potential of two-flavor QCD with zero density by V0(P, β), that of
2+Nf-flavor QCD is written as [4]

Veff(P, β,mh, µ) = V0(P, β0) − ln R(P ; β, mh, µ; β0),(4)
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2 N. YAMADA

with

ln R(P ; β,mh, µ; β0) = 6(β − β0)NsiteP

+ ln

〈
δ(P − P̂ )

(
det M(ml, µ)

det M(ml, 0)

)2 Nf∏

h=1

(
det M(mh, 0)

det M(∞, 0)

)〉

β〈
δ(P − P̂ )

〉

β

,

(6)

where 〈· · · 〉β denotes the ensemble average over two-flavor configurations generated
at β, ml and the vanishing µ. Since the ml dependence of the potential is not
discussed in the following, it is omitted from the arguments. Notice that eq.(5)
relates simulations at different β values. Thanks to this, by performing a number
of simulations at various β, we can study the potential in a wide range of P . The
first determinant in eq. (6) is approximated by

ln

[
det M(ml, µ)

det M(ml, 0)

]
=

Nµ∑

n=1

1

n!

[
∂n(ln det M)

∂(µ/T )n

](µq

T

)n
,(7)

with the truncation error of O[(µq/T )Nµ+1]. Similarly, the second determinant in
eq. (6) is approximated to the leading order as

ln

[
det M(κh, 0)

det M(0, 0)

]
= 288Nsiteκ

4
hP + 12N3

s (2κh)
NtΩ + · · ·(8)

for the Wilson quark action

ln

[
det M(mh, 0)

det M(∞, 0)

]
=

36Nsite

(2mh)4
P +

6N3
s

(2mh)Nt
Ω + · · ·(9)

for the four-flavor standard staggered quark. κh in eq. (8) is the hopping parameter
being inversely proportional to the heavy mass, and Ω is the real part of the
Polyakov loop.

At a first order transition point, Veff shows, as a function of P , a double-well
structure, and in turn the curvature (or equivalently the second derivative) of
the potential d2Veff/d2P vanishes at two values of P . In general, to find the first
order phase transition by observing this behavior, a fine tuning of β is required.
However, since d2Veff/dP 2 does not depend on β and hence d2Veff/dP 2 over the
wide range of P can be easily obtained by combining data obtained at different
β [4], no fine tuning is necessary in this case. In the following analysis, we mainly
focus on the curvature of the effective potential to identify the nature of the phase
transition.

In the µ=0 case, with the formula in eq. (8) or (9), eq. (6) is calculated at
arbitrary values of β and small κh (or large mh). Denoting h = 2Nf(2κh)Nt for the

M:quark matrix
P :plaquette
Ω:Re[Polyakov loop]



•Define Effective Potential of (generalized) plaquette 
through plaquette histogram

Strategy II: Histogram Method

2 N. YAMADA

The partition function for 2+Nf-flavor QCD is

Z(2+Nf)(β, ml,mh, µ)

≈
∫

DU e6βNsiteP̂ × |det M(ml, 0)|2 × exp

[
2

Nµ∑

n=1

1

n!

[
∂n(ln det M)

∂(µ/T )n

](µ

T

)n
]

exp
[
6N3

s hΩ
]

〈O〉2+Nf−flavor, β,µ,κh

=

〈
O exp

[
2
∑6

n=1
1
n!

(
∂n(ln det M)

∂(µ/T )n

) (
µ
T

)n
]
exp [6 hN3

s Ω]
〉

two−flavor, β〈
exp

[
2
∑6

n=1
1
n!

(
∂n(ln det M)

∂(µ/T )n

) (
µ
T

)n
]
exp [6 hN3

s Ω]
〉

two−flavor, β

=

〈
O

(
1 + X̂(1)

µ
µ
T

)
×

(
1 + Ŷ (4)

κh κ
4
h

)〉

two−flavor, β〈(
1 + X̂(1)

µ
µ
T

)
×

(
1 + Ŷ (4)

κh κ
4
h

)〉

two−flavor, β

h = 2Nf(2κh)
Nt

w(P, β) = 〈δ(P − P̂ )〉β
Veff(P, β) = − ln w(P, β)

= − ln w(P, β0) + 6(β − β0)NsiteP

w(2+Nf)(P, β, ml,mh, µ) = 〈δ(P − P̂ )〉(2+Nf )flavor,β,ml,mh,µ

=

∫
DUDψDψ̄ δ(P − P̂ ) e−Sq−Sg

=

∫
DU δ(P − P̂ ) e6βNsiteP̂

Nf+2∏

f=1

(det M(mf , µf ))(6)

Veff(P, β,mf , µf ) = − ln w(2+Nf)(P, β, ml,mh, µ)(7)

Nsite ≡ N3
s ×Nt is the number of sites. β = 6/g2

0 P̂ = −Sg/(6Nsiteβ). Z=
∫

w(P )dP

ω

ω

Veff

Veff

At Tc,
 
if single-well ⇔ crossover

if double-well ⇔ 1st



Combining two methods ⇒ Veff for (2+Nf)-flavor QCD

Re-weighted Veff

Two-flavor part
Always single well Heavy flavors contribution

Study of many flavor QCD in finite temperature based on the Ejiri’s method July 27, 2013

where

6NV Pβ∗ = 6NV Pβ + (”plaquette terms”) = 6NV P

(

β +
(”plaquette terms”)

6NV P

)

, (33)

β∗ = β +
(”plaquette terms”)

6NV P
. (34)

For the cross-check, consider the cumulant expansion,

ln R̂(P ′,κl, 0 → κh) = ln
〈

δ(P ′ − P ) exp
[

6N3
s h × ReΩ

]〉

two,β,κl
− ln

〈

δ(P ′ − P )
〉

two,β,κl

= ln

〈

δ(P ′ − P )

(

1 +
[

6N3
s h × ReΩ

]

+
1

2

[

6N3
s h × ReΩ

]2
+

1

6

[

6N3
s h × ReΩ

]3

+(higher orders)

)

〉

two,β,κl

− ln
〈

δ(P ′ − P )
〉

two,β,κl

=

〈

δ(P ′ − P )
[

6N3
s h × ReΩ

]〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

+
1

2







〈

δ(P ′ − P )
[

6N3
s h × ReΩ

]2
〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

−

(〈

δ(P ′ − P )
[

6N3
s h × ReΩ

]〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

)2






+
1

6

(

〈

δ(P ′ − P )
[

6N3
s h × ReΩ

]3
〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

−3

〈

δ(P ′ − P )
[

6N3
s h × ReΩ

]2
〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

〈

δ(P ′ − P )
[

6N3
s h × ReΩ

]〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

+2

(〈

δ(P ′ − P )
[

6N3
s h × ReΩ

]〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

)3)

+ · · · (35)

4.1.3 reweighting of β and κ

Veff(P ;β,κl,κh) = Veff(P ;β0,κl,κh) − 6 (β − β0)NV P

= Veff(P,β0,κl, 0) − 6 (β − β0)NV P − lnR(P,β0,κl,κh)

= Veff(P,β0,κl, 0) − 6 (β − β0)NV P − ln

〈

δ(P ′ − P ) exp
[

6N3
s h × ReΩ

]〉

two,β0,κl

〈δ(P ′ − P )〉
two,β0,κl

+(”plaquette terms”). (36)
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1
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6N3
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1

2






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δ(P ′ − P )
[

6N3
s h × ReΩ

]2
〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

−

(〈

δ(P ′ − P )
[

6N3
s h × ReΩ

]〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

)2






+
1

6

(

〈

δ(P ′ − P )
[

6N3
s h × ReΩ

]3
〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

−3

〈

δ(P ′ − P )
[

6N3
s h × ReΩ

]2
〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

〈

δ(P ′ − P )
[

6N3
s h × ReΩ

]〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

+2

(〈

δ(P ′ − P )
[

6N3
s h × ReΩ

]〉

two,β,κl

〈δ(P ′ − P )〉
two,β,κl

)3)
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EQUATIONS 3

The potential of two-flavor QCD with zero density by

Veff(P, β, mh, µ) = V0(P, β0) − ln R(P ; β,ml,mh, µ; β0),

ln R(P ; β, mh, µ; β0) = 6(β − β0)NsiteP

+ ln

〈
δ(P − P̂ )

(
det M(ml, µ)

det M(ml, 0)

)2 Nf∏

h=1

(
det M(mh, 0)

det M(∞, 0)

)〉

two−flavors,β〈
δ(P − P̂ )

〉

two−flavors,β

,

(6)

where 〈· · · 〉β denotes the ensemble average over two-flavor configurations generated
at β, ml and the vanishing µ. Since the ml dependence of the potential is not
discussed in the following, it is omitted from the arguments. Notice that eq.(??)
relates simulations at different β values. Thanks to this, by performing a number of
simulations at various β, we can study the potential in a wide range of P .

h = 2Nf(2κh)
Nt for the Wilson quark action

h = Nf/(4 × (2mh)
Nt) for the staggered quark action

ln R(P ; β,κh, 0; β0) = ln R̄(P ;κh, 0) + (plaquette term) + O(κNt+2
h )

R̄(P ;κh, 0) =

〈
δ(P − P̂ ) exp[6hN3

s Ω]
〉

β

〈δ(P ′ − P )〉β

Notice that R̄(P ;κh, 0) does not depend on β.
At a first order transition point, Veff shows, as a function of P , a double-well

structure, and in turn the curvature (or equivalently the second derivative) of the
potential d2Veff/d2P vanishes at two values of P . In general, to find the first order
phase transition by observing this behavior, a fine tuning of β is required. However,
since d2Veff/dP 2 does not depend on β and hence d2Veff/dP 2 over the wide range
of P can be easily obtained by combining data obtained at different β [4], no fine
tuning is necessary in this case. In the following analysis, we mainly focus on the
curvature of the effective potential to identify the nature of the phase transition.

In the µ=0 case, with the formula in eq. (4) or (5), eq. (6) is calculated at arbitrary
values of β and small κh (or large mh). The contribution from the plaquette term
can be absorbed by a shift of β and the coefficients of improvements, i.e. β → β∗ ≡
β + 48(Nf − 2)κ4

h for the Wilson case. As seen in the above equations, the choice
of the action is not important. In the following, the mass dependence is discussed
through the parameter h.

Note: hopping parameter is in
In the following,
• look at the curvature of potential (2nd deriv. wrt P)
• determine hcrit above which transition is 1st order ⇔ mhcrit

ln R



2-flavor configurations:
p4-improved staggered quark
the standard plaquette gauge
a ml = 0.1,
10,000-40,000 trajs.
V=163×4,
β = [3.52, 4.00] (16 values),
T/Tc = [0.76,1.98],
MPS/MV~0.7
[C.R. Allton, et al., PRD71,054508 (2005)]

Calculated with h = [0.01, 0.07]
‣lnR increases with h.
‣Rapid increase@P~0.81
⇒large curvature

Heavy flavors contribution to Veff
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Figure 1. ln R(P, h) as functions of the plaquette.
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Figure 2. The curvature of ln R̄(P, h) and d2Veff/dP 2(P, 0) as func-
tions of the plaquette.

Numerical results. We use the two-flavor QCD configurations generated with p4-
improved staggered quarks and the standard plaquette gauge action in Ref. [9]. The
lattice size Nsite is 163×4. The data are obtained at sixteen values of β from β = 3.52
to 4.00 with the bare quark mass ma = 0.1 fixed. The number of trajectories is 10,000
– 40,000, depending on β. The corresponding temperature normalized by the pseudo-
critical temperature is in the range of T/Tc = 0.76 to 1.98, and the pseudo-critical
point is about β = 3.65, where the ratio of pseudo-scalar and vector meson masses
is mPS/mV ≈ 0.7. All configurations are used for the analysis at zero density, while
the finite density analysis is performed every 10 trajectories. Further details on the
simulation parameters are given in Ref. [9]. The same data set is used to study the
phase structure of two-flavor QCD at finite density in Ref. [4].

For later use, we first calculate the potential in two-flavor QCD at zero density,
V0(P, β), the first term in eq. (??). Because the finite temperature transition is



Maximum of the 2nd term 
exceeds 1st term at P~0.81 
for h ≳ 0.06, where
∂2Veff/∂P2 is negative.
⇒ 1st order phase transition

hc= 0.0614(69)
@MPS/MV~0.7

∂2Veff/∂P2=∂2V0/∂P2 − ∂2(ln R)/∂P2
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Numerical results. We use the two-flavor QCD configurations generated with p4-
improved staggered quarks and the standard plaquette gauge action in Ref. [9]. The
lattice size Nsite is 163×4. The data are obtained at sixteen values of β from β = 3.52
to 4.00 with the bare quark mass ma = 0.1 fixed. The number of trajectories is 10,000
– 40,000, depending on β. The corresponding temperature normalized by the pseudo-
critical temperature is in the range of T/Tc = 0.76 to 1.98, and the pseudo-critical
point is about β = 3.65, where the ratio of pseudo-scalar and vector meson masses
is mPS/mV ≈ 0.7. All configurations are used for the analysis at zero density, while
the finite density analysis is performed every 10 trajectories. Further details on the
simulation parameters are given in Ref. [9]. The same data set is used to study the
phase structure of two-flavor QCD at finite density in Ref. [4].

For later use, we first calculate the potential in two-flavor QCD at zero density,
V0(P, β), the first term in eq. (??). Because the finite temperature transition is
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Comments
The order of the transition was 
studied along the red line.

‣hc = 0.0614(69) = 2 Nf (2Khc)Nt

‣Khc gets small as Nf increases.
‣E.g., for Nf =10, Khc ~ 0.118.
‣ (LO)~(NLO) @Kh ~ 0.18.

[Ejiri et al. in preparation]
For large Nf, endpoint is in the 
region where HPE is valid.
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Varying ml

In order to determine mhTCP, 
we have started to 
determine mhcrit  for 
various ml.

The following is progress 
report.



Summary and outlooks

✓Successful EWBG in TC may put upper bound on techni-
hadron masses.

✓ In general, parameter search of many flavor theories is 
computationally demanding. We proposed an easy-to-use 
approach and demonstrated that it works by determining the 
critical kappa.

✓On-going calculation and Future plan:
- Test for the existence of TCP through the universal power 

behavior.
- Quantify the strength of 1st order transition to see whether 

EWBG is possible.


