Interactions of Charmed Mesons with Light Pseudoscalar Mesons from Lattice QCD

Liuming Liu HISKP, Universität Bonn

in collaboration with K. Orginos, F.-K. Guo, C. Hanhart and U.-G. Meißner

> Lattice 2013 Mainz, Germany

- In 2003 BaBar Collaboration discovered a positive-parity scalar charm strange meson $D_{s0}^*(2317)$ in $D_s\pi^0$ channel. The spin-1 partner $D_{s1}(2460)$ is also found in the $D_s^*\pi^0$ channel.
- These two states lie below *DK* and *D***K* threshold respectively.
- Some proposals about their structure: molecule, chiral partner of the (0⁻, 1⁻) doublet, tetraquark states...
- Study *DK* interaction is important to understand the structure of $D_{s0}^*(2317)$.

Lüscher's finite volume method

$$p\cot\delta(p) = rac{1}{\pi L}\mathbf{S}\Big(\Big(rac{pL}{2\pi}\Big)^2\Big)$$

The energy shift is obtained by fitting the ratio

$$R^{h_1 - h_2}(t) = \frac{G^{h_1 - h_2}(t, 0)}{G^{h_1}(t, 0)G^{h_2}(t, 0)} \longrightarrow \exp(-\Delta E \cdot t)$$
(1)

to a single exponential, where $G^{h_1-h_2}(t) = \langle \mathcal{O}^{h_1}(t) \mathcal{O}^{h_2}(t) (\mathcal{O}^{h_1}(0) \mathcal{O}^{h_2}(0))^{\dagger} \rangle .$ We use the gauge configurations generated by the MILC Collaboration (C. Aubin *et al*, Phys. Rev D70, 094505 (2004)).

- Gauge action : one loop tadpole-improved gauge action. $\mathcal{O}(a^2)$ and $\mathcal{O}(g^2a^2)$ errors are removed.
- Fermion actions
 - Asqtad improved Kogut-Susskind action for sea quark.
 - Domain-wall fermion for light valence quark (*u*, *d*, *s*).
 - Fermilab action for charm quark.
- lattice size: $20^3 \times 64$, lattice spacing ~ 0.125fm
- *M*_π ~ 290, 350, 490, 590MeV.

The channels we studied on lattice:

$$\begin{aligned} \mathcal{O}_{D_{s}\pi}^{l=1} &= D_{s}^{-}\pi^{+}, \quad \mathcal{O}_{D\pi}^{l=3/2} = D^{+}\pi^{+}, \quad \mathcal{O}_{D_{s}K}^{l=1/2} = D_{s}^{+}K^{+}, \\ \mathcal{O}_{D\bar{K}}^{l=1} &= D^{+}\bar{K}^{0}, \quad \mathcal{O}_{D\bar{K}}^{l=0} = D^{+}K^{-} - D^{0}\bar{K^{0}}, \end{aligned}$$

where all the one particle operators are of the form $\bar{\psi}_1\gamma_5\psi_2$. π , D, K and \bar{K} represent the isospin triplet (π^+ , π^0 , π^-) and doublets (D^+ , D^0), (K^+ , K^0) and (\bar{K}^0 , K^-), respectively.

• The channels we did not calculate directly on lattice: $D\pi(I = 1/2)$, DK(I = 1), DK(I = 0) and $D_s\bar{K}(I = 1/2)$.

Chiral extrapolations

Resum the chiral amplitude up to $\mathcal{O}(p^2)$:

 $T(s) = V(s)[1 - G(s)V(s)]^{-1}$,

G is regularized by a subtraction constant $\tilde{a}(\lambda)$.

$$V(s, t, u) = \frac{1}{F^2} \left[\frac{C_{\text{LO}}}{4} (s-u) - 4C_0 h_0 + 2C_1 h_1 - 2C_{24} H_{24}(s, t, u) + 2C_{35} H_{35}(s, t, u) \right],$$

$$H_{24}(s, t, u) = 2h_{24}p_2 \cdot p_4 + h_4 \left(p_1 \cdot p_2 p_3 \cdot p_4 + p_1 \cdot p_4 p_2 \cdot p_3 - 2\bar{M}_D^2 p_2 \cdot p_4 \right),$$

and

$$H_{35}(s,t,u) = h_{35}p_2 \cdot p_4 + h_5 \left(p_1 \cdot p_2 p_3 \cdot p_4 + p_1 \cdot p_4 p_2 \cdot p_3 - 2\bar{M}_D^2 p_2 \cdot p_4 \right),$$

	M_{π}	M _K	M _D	M _{Ds}
m007	0.1842(7)	0.3682(5)	1.2081(13)	1.2637(10)
m010	0.2238(5)	0.3791(5)	1.2083(11)	1.2635(10)
m020	0.3113(4)	0.4058(4)	1.2226(13)	1.2614(12)
m030	0.3752(5)	0.4311(5)	1.2320(11)	1.2599(12)

• h_1 is determined by the SU(3) flavor mass splitting.

• We will use

$$M_{K} = \mathring{M}_{K} + M_{\pi}^{2}/(4\mathring{M}_{K}),$$

$$M_{D} = \mathring{M}_{D} + (h_{1} + 2h_{0})\frac{M_{\pi}^{2}}{\mathring{M}_{D}},$$

$$M_{D_{s}} = \mathring{M}_{D_{s}} + 2h_{0}\frac{M_{\pi}^{2}}{\mathring{M}_{D_{s}}}.$$

The scattering lengths extrapolated to the physical light quark masses:

Channels	$D\bar{K}(I=1)$	$D\bar{K}(I=0)$	D _s K	$D\pi(I=3/2)$	$D_s\pi$
<i>a</i> (fm)	-0.20(1)	0.84(15)	-0.18(1)	-0.100(2)	-0.002(1)

The other channels can be predicted from the LEC's determined from the fit:

Channels	<i>a</i> (fm)
$D\pi(l=1/2)$	$0.37^{+0.03}_{-0.02}$
DK(I=0)	$-0.84^{+0.17}_{-0.22}$
DK(I=1)	$0.07 \pm 0.03 + i(0.17^{+0.02}_{-0.01})$
D _s Ā	$-0.09^{+0.06}_{-0.05} + i(0.44 \pm 0.05)$

- The interaction in DK(I = 0) channel is so strong that the a pole emerges in the resummed amplitude.
- An pole on the real axis can be found in the first Riemann sheet, which correspond to a bound state. The pole position is 2315^{+18}_{-28} MeV.
- If there is an S-wave shallow bound state, the scattering length is related to the binding energy, and to the wave function renormalization constant Z, with 1 – Z being the probability of finding the molecular component in the physical state (S. Weinberg, Phys.Rev. 137, B672 (1965).

$$a = -2\left(\frac{1-Z}{2-Z}\right)\frac{1}{\sqrt{2\mu\epsilon}}\left(1+\mathcal{O}(\sqrt{2\mu\epsilon}/\beta)\right).$$

1 - Z is found to be in the range [0.66, 0.73]. If Z = 0, a = -1.05 fm Fix the pole position at the physical mass of $D_{s0}^*(2317)$ at the first Riemann sheet.

Channels	<i>a</i> (fm)		
$D\bar{K}(I=1)$	-0.21(1)		
$D\bar{K}(I=0)$	0.84(15)		
DsK	-0.18(1)		
$D\pi(I = 3/2)$	-0.100(1)		
$D_s\pi$	-0.002(1)		
$D\pi(l=1/2)$	0.37 ± 0.01		
DK(I=0)	-0.86 ± 0.03		
DK(I = 1)	$0.04^{+0.05}_{-0.01} + i(0.16^{+0.02}_{-0.01})$		
D _s \bar{K}	$-0.06^{+0.01}_{-0.05}+i(0.45\pm0.05)$		

Isospin breaking decay width of the $D_{s0}^{*}(2317)$

- The decay width of the $D_{s0}^*(2317) \rightarrow D_s \pi^0$ can be a good criterion for testing the nature of the $D_{s0}^*(2317)$. In the $c\bar{s}$ meson picture, the decay width is of order 10 keV. In the molecular picture, it is of order 100keV.
- With the LEC's obtained from the fit, and the isospin breaking quark mass ratio $(m_d m_u)/(m_s \hat{m}) = 0.0299 \pm 0.0018$, we have:

$$\Gamma(D_{s0}^*(2317) \rightarrow D_s \pi) = (133 \pm 22) \text{ keV}.$$

Conclusions

- We calculate the scattering lengths of five channels, $D\bar{K}(l=1)$, $D\bar{K}(l=0)$, D_sK , $D\pi(l=3/2)$ and $D_s\pi$ on lattices.
- Chiral extrapolation is performed in a unitarized approach. The LEC's are determined.
- The scattering length of the other channels, $D\pi(l = 1/2)$, DK(l = 1), DK(l = 0) and $D_S\bar{K}$, are predicted from the LEC's.
- We find that the attractive interaction in the DK(I = 0)channel is strong enough so that a pole is generated in the unitarized scattering amplitude. The pole position is close to $D_{s0}^{*}(2317)$.
- The isospin breaking decay width is calculated and the result support the molecule interpretation of $D_{s0}^{*}(2317)$.
- In the future: disconnected diagrams, coupled channels, volume dependence...

Thank you!