DK scattering and the D_s spectrum

Daniel Mohler

Fermilab, PPD, Theory Batavia, IL, USA

Mainz, July 31 2013

‡ Fermilab

Collaborators: C. B. Lang, Luka Leskovec, Sasa Prelovsek, Richard Woloshyn

Motivation: Experimental D_s spectrum

- Established states:
 - $D_s(J^P = 0^-)$ and $D_s^*(1^-)$ • $D_{s0}^*(2317)(0^+)$, $D_{s1}(2460)(1^+)$, $D_{s1}(2536)(1^+)$, $D_{s2}^*(2573)(2^+)$
- More recent discoveries:
 - D_{s1}^{*} (2710) seen by BaBar, Belle (1⁻)
 - $D_{s,l}^*(2860)$ seen by BaBar (3-?,0+?)
 - $D_{s,l}^*(3040)$ seen by BaBar (1+?,2-?)
 - $D_{s,l}^*$ (2632) seen by SELEX (1-?)
- There is a zoo of phenomenological models and lattice results are getting dated
- Some models suggest a tetraquark/molecular interpretations for controversial states

Our previous attempt...

Mohler and Woloshyn, PRD 84 054503, 2011

- DK threshold turned out to be unphysical
- Even with light sea-quark masses the lowest states with $J^P=0^+,1^+$ remained unphysical
- Including the DK threshold explicitly might be vital

For our current efforts

- Work with a partially quenched strange quark
 - Use ϕ meson and η_s to set strange quark mass
 - We obtain $\kappa_s = 0.13666$
- Improve charm quark tuning used for Fermilab charm
 - Use Landau link for $c_{sw,c} = \frac{1}{u_0^3}$
 - Empirically this reduces discretization effects
- Explicitly include DK interpolators into the basis

Technicalities: The "Distillation" method

Peardon et al. PRD 80, 054506 (2009); Morningstar et al. PRD 83, 114505 (2011)

 Idea: Construct separable quark smearing operator using low modes of the 3D lattice Laplacian Spectral decomposition for an $N \times N$ matrix:

$$f(A) = \sum_{k=1}^{N} f(\lambda^{(k)}) v^{(k)} v^{(k)\dagger}.$$

With $f(\nabla^2) = \Theta(\sigma_s^2 + \nabla^2)$ (Laplacian-Heaviside (LapH) smearing):

$$q_s \equiv \sum_{k=1}^N \Theta(\sigma_s^2 + \lambda^{(k)}) v^{(k)} v^{(k)\dagger} \ q \ = \ \sum_{k=1}^{N_v} v^{(k)} v^{(k)\dagger} \ q \ .$$

- Advantages: momentum projection at source; large interpolator freedom, small storage
- Disadvantages: expensive; unfavorable volume scaling
- Stochastic approach improves bad volume scaling 5/15

Technicalities II: Lattices used

ID	$N_L^3 imes N_T$	N_f	<i>a</i> [fm]	<i>L</i> [fm]	#configs	$m_{\pi}[MeV]$	$m_K[MeV]$
(1)	$16^{3} \times 32$	2	0.1239(13)	1.98	280/279	266(3)(3)	552(2)(6)
(2)	$32^3 \times 64$	2+1	0.0907(13)	2.90	196	156(7)(2)	504(1)(7)

Ensemble (1) has 2 flavors of nHYP-smeared quarks

```
Gauge ensemble from Hasenfratz et al. PRD 78 054511 (2008)

Hasenfratz et al. PRD 78 014515 (2008)
```

• Ensemble (2) has 2+1 flavors of Wilson-Clover quarks

```
PACS-CS, Aoki et al. PRD 79 034503 (2009)
```

On the larger volume we use stochastic distillation

```
Morningstar et al. PRD 83, 114505 (2011)
```


Technicalities III: Charm quark treatment

We use the Fermilab method for the heavy (charm) quark

- We tune κ so that the spin averaged kinetic mass $(M_{\eta c} + 3M_{J/\Psi})/4$ assumes its physical value
- General form for the dispersion relation

$$E(p) = M_1 + \frac{p^2}{2M_2} - \frac{a^3 W_4}{6} \sum_i p_i^4 - \frac{(p^2)^2}{8M_4^3} + \dots$$

- We tried different strategies and neglect the term with W₄ for the final analysis
- For the DK we therefore use

$$E = \sqrt{m_K^2 + p^{*2}} + M_1 + \frac{p^{*2}}{2M_2} - \frac{p^{*4}}{8M_4^3}$$
.

Energy levels for D_s with $J^P = 0^+$

- With the combined basis we obtain a much better quality of the ground state plateau
- The variational method yields two low-lying levels and fits are unambiguous

Possible interpretations

- (1) A sub-threshold state stable under the strong interaction
 - We call this "bound state scenario"
 - This is irrespective of the nature of the state
 - One expects a negative scattering length in this case

See Sasaki and Yamazaki, PRD 74 114507 (2006) for details. See also NPLQCD, arXiv 1301.5790 for an example.

- (2) A resonance in a channel with attractive interaction
 - The lowest state corresponds to the scattering level shifted below threshold in finite volume
 - The additional level would indicate a QCD resonance
 - One expects a positive scattering length in this case

This is the situation for the $D_0^*(2400)$ DM, Prelovsek, Woloshyn PRD 87 034501 (2013).

Using Lüscher's formula

 We can test the plausibility of these scenarios using Lüscher's formula and an effective range approximation

```
M. Lüscher Commun. Math. Phys. 105 (1986) 153;
Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.
```

$$p \cot \delta(p) = rac{2}{\sqrt{\pi}L} Z_{00}(1, p^2) \; ,
 pprox rac{1}{a_0} + rac{1}{2} r_0 p^2 \; ,$$

• Preliminary results for ensembles (1) and (2)

$$a_0 = -0.756 \pm 0.025 \text{fm}$$
 $r_0 = 0.056 \pm 0.031 \text{fm}$ (1)

$$a_0 = -1.33 \pm 0.20 \text{fm}$$
 $r_0 = 0.27 \pm 0.17 \text{fm}$ (2)

We are still investigating the systematics

Results for the scattering length a₀

- We compare to the predictions from an indirect calculation
 Liu et al. PRD 87 014508 (2013).
- Our determination robustly leads to negative values.

Infinite volume bound states vs. experiment

- For a bound state we expect an S-matrix pole and $\cot \delta = i$
- Using our a₀ and r₀ we can determine the binding momentum and calculate the corresponding energy level

Conclusions

- We calculated energy levels in the $D_s J^P = 0^+$ channel with a combined basis of $\bar{q}q$ and DK interpolators
- We use partially quenched strange quarks, Fermilab c quarks and almost physical u/d quarks
- The DK interpolators are crucial to get reliable energy levels
- We observe an energy level compatible with the experimental $D_{s0}^*(2317)$
- The situation is similar but more messy for the $D_{s1}(2460)...$

For a similar situation see talk by S. Prelovsek Thursday 17:30 in 8G

...

Thank you!

Backup: Example energies

