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ABSTRACT: The dependence of 4D SU(NN) gauge theories on the topological 0
term is investigated at finite temperature, and in particular in the large-N limit.
General arguments and numerical analyses exploiting the lattice formulation
show that it drastically changes across the deconfinement transition. The low-T
phase is characterized by a large-N scaling with 8/N as relevant variable, while in
the high-T" phase the scaling variable is just 8 and the free energy is essentially
determined by the instanton-gas approximation.
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4D SU(N) gauge theories have a nontrivial # dependence
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q(x) = %emeﬁy(:p)Fgg(x) is the topological charge density.

The topological # term violates parity and time reversal

0] < 1077 from experimental bounds on the neutron electric dipole

moment: |d,| < 3 x 1072¢ e cm, and d,, ~ fem? /m? ~ 107190 e cm.
Nevertheless 0 dependence remains an interesting issue,

for example, U (1) A problem — the axial U(1) 4 symmetry is not

realized in the QCD spectrum, neither explicitly nor as a Goldstone

mechanism (172, > \/§m7r), being violated at quantum level



6 dependence vanishes in perturbation theory.

In the semiclassical picture, contributions from classical instanton
solutions with nontrivial topology, [ d*z q[Ar(z)] = Q, give rise to
tunneling between n-vacua, leading to 6 vacua: [0) =Y e"?|n)

The U(1)4 charge is not conserved due to the chiral anomaly
0,98 () = i2Nsq(x).

A robust numerical evidence of a nontrivial 8 dependence from MC
simulations of the lattice formulation of the theory.

At finite T': this issue is related to the expected softening of the
U(1)a breaking, to understand the main features of its T dependence,
effective U(1) 4 symmetry restoration, T-dep of n’ mass, nature of the

hadron-to-quarkgluon transition, spectrum of the excitations, etc

possible evidences from heavy-ion collisions, e.g. claims of a softening of the n’

mass from Au-+Au collisions at RHIC (csorgo etal, PRL 1010)



6 dependence of the ground-state and free energy

T = 0 ground-state energy:

B(0) = —Vi41n / (dA] exp (- / d4x£9>
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Lo = 7 Fi (@) Fi (@) —i0q(z),  q(x) = o cupn Fi (@) Fjo ()

The free energy at finite temperature (cross, pisarski, vatte, RMP 1081)

F(0,T) :—V%LlnTreH/T ——V—41n/dA exp( / dt/d a:£9>,

Vi =T/ Vs, A,(1/T,x) = A,(0,x),

In the pure gauge theory 0 is a dimensionless RG invariant parameter, i.e.

it does not renormalize in appropriate RG schemes, such as the MS scheme



The ground-state/free energy can be parametrized as

FO.T)= F(0,T) — F(0,T) = %Xme%(e, T)

X(T) = [ d*z{q(x)q(0))9—0 = (Q*)9—0/Va is the topological susceptibility,

s(0,T) is a dimensionless even function of 8 such that s(0,7") = 1.

Analyticity at 6 = 0 (CP is not broken at 6 = 0, vafa, Witten, PRL 1984) —

S(0,T) = 1+ by(T)0% + by(T)0 + - -, (v eummsoponton, orvosien 2000

b; are dimensionless RG invariant quantities,

related to the zero-momentum n-point correlation functions of ¢(x), e.g.

bo = —x4/(12x) and x4 = fd4x1d4x2d4a¢3(q(O)q(a:l)q(a:Q)q(ajg)>c]9:0, and
the cumulants of P(Q).

If by, = 0 then the distribution is Gaussian P(Q) = —27r1<Q2> exp (——2%22>)



Within the large- /N framework (N — oo, g?N fixed) the U(1)4
problem is explained by a 6 dependence at the leading 1/N order

2
WYV relations: x = f fS or 4;\; X = m / —I—m2

— 2mK (Witten, Veneziano, 1979)

Large-N scaling to £o = 1 F2, (z z)F5, (x) — i@é%ewpang(x)Fga(x)

1t pv
— the relevant scaling variable is (9 =0 / N

1 _
f(0) = . — 5062(1 + 020 + bs0* + ...) = N°f(6)
f(0) has a nontrivial large-N limit: %C’oo9_2(1 + b20? + ba0* + - ),

where C' = X/O'2 — Oy + CQ/N2 -+ ..., and bgj = BQj/N2j -+ ...

A multibranched F(0), F(0) — F(0) = AMiny, (6 + 27k)? + O (1/N) (Witten, AP

1980, PRL 1998), avoids the apparent incompatibility with periodicity in 6.



Semiclassically 6 dependence arises from instantons.

2, 2 . 2/, 2 : N
The one-instanton contribution e 3™ /9" % = (6_8” /(g N)ew/N)
suggests an exponentially small §# dep. This conclusion is incorrect:

the instanton gas approximation fails due to infrared divergences.

At finite temperature, T provides the infrared cutoff to the

instanton-size distribution, n;(p) ~ e SA1) ~ =87 /9" +2N (xpT)"]

(Gross,Pisarski,Yaffe, RMP 1981)

Dilute instanton-gas (DIG) approximation at finite 7" summing

over ny instantons and n_ antiinstantons:

87r2(n_|_—|—n_)
2
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Ly = Tre Ho/T ~ Z
— exp [cos@ X 2V4 D X e_Swz/gz}

therefore F(60,T) = F(0,T) — F(0,T) ~ x(T) (1 — cos0)



At high T ... dilute instanton-gas (DIG) approximation
At one loop OF /060 = sind [ dpn, (p) ~ sinf x T4e—87"/9*(T)

F(0,T) = x(T) (1 —cosf),  X(T)~T"exp[-87°/¢*(T)] ~ T~ 3 N+

using 872 /g%(T) ~ (11/3)N In(T/A) + O(Inln T/ In? T)

DIG is a good approximation when the overlap between instantons

becomes negligible, thus at large T' where x(T') is suppressed

The high-T' 6 dependence qualitatively differs from that at 7" = O:
(e) analytic and periodic € dependence

(o) The large-N scaling is not realized by the DIG approximation: the
relevant variable for the instanton gas is 6, and not 6/N

(o) x(T') gets exponentially suppressed in the large-N regime, suggesting a
rapid decrease of the topological activity with increasing N at high T



e The low-T" and high-T" phases are separated by a 1%*-order
deconfinement transition, at 7,./\/c ~ 0.545(2) + 0.46(2) /N>

(Lucini, etal, 2004,2012) getting stronger with increasing N, Lj ~ N?2

o for I' < I, — large-N scaling with §/N as scaling variable —
x/0? =~ Oy + ¢/N? and by, ~ by, /N,

Does it extend up to 17

o for /' > I, — analytic § dependence by DIG approximation:
F ~ x(T)(1 — cosh) with x(T) ~ T~ 3N+,

Does it extend down to 7.7

Working hypothesis: The change between the low-1" and high-7" 6

dependence occurs around the deconfinement transition.

Some hints also from models like ADS-CFT, holographic models, etc... (witten,

PRL 1998; Parnashev, Zhitnisky PRD 1998; Unsal PRD 2012, etc)



Quantitative studies of 6 dependence by MC simulations of the
Wilson lattice formulation

CL4
Z = /[dU] exp(—Sr), St = _29—8 ZReTr U (2)Uy (x + a/fL)UEL(:I: + ad)UJ ()]

The complex nature of the # term prohibits MC simulations at 6 # 0.

Expansion around 6 = 0: F(0) — F(0)) = 2x07(1 + b26® + bs0* + ...)
x and bz, from correlation functions (q(x1)q(x2)...q(x2,)) at 0 = 0,
1 -
ba = _1X2;4X> X4 =3 (QY) — 3<Q2>2]e:0 ; Q= ZQ(@
1 -
bs = 5585 X6 = 1, (Q%) —15(Q*)(Q") +30(Q%)°] ,_,
In the continuum limit, ka,L ~ bgk -+ CL2O'2 fora — 0
bon, — deviations from a Gaussian P(Q) = ————— exp (—Q—Z)
V27 (Q2) 2(Q%)

Various methods to compute @), based on smoothing, off-equilibrium, fermionic

index, GW Dirac operators, ...



0 dependence at T' =0
o x = 0°F(0)/00°|9—0 # 0 for SU(3): x/o® = 0.028(2) by various methods

e Nonzero large-N limit: X/02 = 0.022(2), investigated by MC simulations

for N > 3 (by Cundy, Del Debbio, Lucini, Panagopoulos, Teper, V., Wenger, ... They SuppOI‘t

the expected large-N behavior: x/0? = Co + c2/N?

e Nonzero higher-order terms of the expansion around 6 = 0,

F(0) — F(0) = sx02(1 + b26% + bs0* +..),
SU(3) estimates: by = —0.026(3) and |b4| < 0.001 I
(using various methods to determine Q) Ni';i ﬁ% 1 1
e Vanishing large-N limit of by = O(N _k), |2 g vose e s
results consistent with by ~ by /N?, by ~ —0.2, Ol mRREELT
see the plot of N2by vs N 3 ton 6

Deviations from a simple Gaussian behavior are already small at N = 3.

b, requires large statistics, due to the cancellation of volume factors



T T T
e \ at finite T B TPL=: = NS _
08| el 1
Several MC results (alies, Bonati, s | | |
= i
Del Debbio, D’Elia, Di Giacomo, Lucini, E\ 06~ N
= +
Panagopoulos, Teper, V., Wenger, ...) 04 N=3, Lt=10 _
" 4 N=4,L=6 HH .
x(T)/x(T=0)vst=T/T.—1 027 W N=4,L=8 - i
.. i ° N:6, Lt:6 —e—g
across the transition — 00— x s R
t

e \ remains substantially unchanged in the low-1" confined phase.
This also suggests T(0) ~ T + c0? /N? (D'Blia, Negro, PRL 2012)
e A sharp change across the first-order transition, likely discontinuous

e In the high-T" phase x shows a clear suppression, which becomes
stronger with increasing IV, in qualitative agreement with one-loop DIG

x(T) ~ T=3 N+ for T > T., but larger T are necessary for a quantitative check
of the one-loop DIG approximation of x(7)



e Higher-order terms of F'(0,T) = 2x0?(1 + ba6? + bs0* + - - -) provide

a more significant probe of DIG regimes, avoiding the problem of the logarithmic

corrections of the prefactor

High-statistics MC for N = 3, 6 and
Ly = 5,6,10,12 (smoothing techniques
for @)), to check large-N scaling and con-
tinuum limit.

(Bonati, D’Elia, Panagopoulos, V, PRL 2013)

bor are compared with T' = 0 results

and DIG approx —
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e Sharp change across the deconfinement transition, likely discontinuous

e For 7' > T,, rapid approach to DIG 6 dependence, with deviations

visible only for ¢t ~ 0.05. The approach appears faster with increasing V.

e by =0.0024(4) for N =6 and t = 0.09 to be compared with by = 1/360.



Deviations from dilute instanton gas at t = (T — T¢)/T. < 0.1

The approach to the DIG regime can be parametrized by a virial-like
expansion: the asymptotic formula is corrected by a term proportional to

the square of the instanton density

T T=0,N=6 e N=3,L=10 7
Since X(T) ~ Pinst -0.025 % T=0, N=3 : Hig: :::iéz |
, . v N=6,L=5 |
F(0,T) ~ x(1—cosh) +x?k(0) + O(x3) 005l i
b, | |
k(0) = >, _, cop sin(0/2)%k R R insantongas %@q
il ¢ ]

Ly - B
Thus, by = —75 + 5 cax + O(x?). , |

0125 \ ‘ ‘ ‘ \ ‘ \ ‘ \

The behavior y ~ T~ /3+4 implies a rapid approach to the asymptotic
DIG value, which becomes faster with increasing V.

The hard-core approximation of instanton interactions give a negative correction,

i.e. ¢4 < 0, explaining the approach from below to the DIG value by = —1/12.



Summary of the # dependence in 4D SU(N) gauge theories

F0,T)=F(@,T)— F(0,T) = %X(T)e2 (14 bo(T)62 + ba(T)0* + - - )

e Low-1" phase characterized by a large-N scaling with v / N as
relevant variable: x/o? ~ Co + ¢/N? and by, ~ by /N*

e Sharp change across the deconfinement transition, likely

discontinuous, which becomes sharper with increasing N.

e High-7" phase: large-N scaling is lost, the topological activity is largely
reduced. The dilute instanton-gas regime sets in just above T,

giving an analytic dependence F'(0) — F'(0) ~ x(7T")(1 — cosf).
e MC simulations nicely support the above scenario.

Analog results expected in full QCD, which would imply suppressed
U(1)a breaking in the quark-gluon plasma. Around T, this may affect the
nature of the chiral transition, because a suppressed U(1) 4 breaking would lead
to the [U(2)r ® U(2)r |/ U(2)y universality class, different from O(4)/O(3).
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Semiclassically § dependence arises from instantons

Nontrivial 6 dependence from the expansion of the functional integral in
the sector with () = n about the minimum action with ) = n.

Z =Tre H/T = /DAe_S(A)erQ(A)

=3 [ DASQ —m)e S & 3T [ du eSO DetlQ(A; ()

Instantons: classical finite-energy solutions Ar(u) which minimize the
action within each topological sector, tunneling among n-vacua

Ly
x2 + p2 ’

Al =aphrare S(Ar) = 812 /g*

. . . _871-2/92 20 —87T2/(92N) ’LG/N N
The one-instanton contribution e e’ = (e e )
appears exponentially suppressed in the large-N limit, suggesting that the

6 dependence is exponentially small in N.

This conclusion is incorrect, the instanton gas approximation fails due to

infrared divergences.



Dilute instanton-gas (DIG) approximation at finite T°

At finite T', due to electric screening, only fields with integer () can
contribute to the functional integral: periodic instantons in = 1/T

(Gross, Pisarski, Yaffe, RMP 1981)

(mp?T /r)sinh(27Tr)

A® = TIgH e (1% /24)9, 111, II(t,x) =1
I 1 (7/20) (t,%) i cos(2nTr) — cosh(2nT't)

At finite temperature, T' plays the role of infrared cutoff,

ni(p) ~ e~ SN o o= [87%/g* 42N (mpT)?)

DIG approximation summing over n; instantons and n_ antiinstantons:

87r2(n_|_—|—n_)
o 2

1
Zo = Tre Ho/T & 37 O

+i0(np—n_)

— exp [COSH X 2V4 D X e_8ﬁ2/92}

therefore F(0,T) = F(0,T) — F(0,T) ~ x(T) (1 — cos )



