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ABSTRACT: The dependence of 4D SU(N) gauge theories on the topological θ

term is investigated at finite temperature, and in particular in the large-N limit.

General arguments and numerical analyses exploiting the lattice formulation

show that it drastically changes across the deconfinement transition. The low-T

phase is characterized by a large-N scaling with θ/N as relevant variable, while in

the high-T phase the scaling variable is just θ and the free energy is essentially

determined by the instanton-gas approximation.
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4D SU(N) gauge theories have a nontrivial θ dependence

Lθ,Euclidean =
1

4
F a

µν(x)F a
µν(x) − iθ

g2

64π2
ǫµνρσF a

µν(x)F a
ρσ(x),

q(x) = g2

64π2 ǫµνρσF a
µν(x)F a

ρσ(x) is the topological charge density.

The topological θ term violates parity and time reversal

|θ| ∼< 10−9 from experimental bounds on the neutron electric dipole

moment: |dn| < 3 × 10−26 e cm, and dn ∼ θem2
π/m3

n ≈ 10−16θ e cm.

Nevertheless θ dependence remains an interesting issue,

for example, U(1)A problem → the axial U(1)A symmetry is not

realized in the QCD spectrum, neither explicitly nor as a Goldstone

mechanism (mη′ >
√

3mπ), being violated at quantum level



θ dependence vanishes in perturbation theory.

In the semiclassical picture, contributions from classical instanton

solutions with nontrivial topology,
∫

d4x q[AI(x)] = Q, give rise to

tunneling between n-vacua, leading to θ vacua: |θ〉 =
∑

n einθ|n〉
The U(1)A charge is not conserved due to the chiral anomaly

∂µjµ
5 (x) = i2Nfq(x).

A robust numerical evidence of a nontrivial θ dependence from MC

simulations of the lattice formulation of the theory.

At finite T : this issue is related to the expected softening of the

U(1)A breaking, to understand the main features of its T dependence,

effective U(1)A symmetry restoration, T -dep of η′ mass, nature of the

hadron-to-quarkgluon transition, spectrum of the excitations, etc

possible evidences from heavy-ion collisions, e.g. claims of a softening of the η′

mass from Au+Au collisions at RHIC (Csorgo etal, PRL 1010)



θ dependence of the ground-state and free energy

T = 0 ground-state energy:

E(θ) = −
1

V4
ln

Z

[dA] exp

„

−

Z

d4xLθ

«

Lθ =
1

4
F a

µν(x)F a
µν(x) − iθq(x), q(x) =

g2

64π2
ǫµνρσF a

µν(x)F a
ρσ(x)

The free energy at finite temperature (Gross, Pisarski, Yaffe, RMP 1981)

F (θ, T ) = −
1

V4
ln Tre−H/T = −

1

V4
ln

Z

[dA] exp

 

−

Z 1/T

0

dt

Z

d3xLθ

!

,

V4 ≡ T/V3, Aµ(1/T,x) = Aµ(0,x), E(θ) = F (θ, 0)

In the pure gauge theory θ is a dimensionless RG invariant parameter, i.e.

it does not renormalize in appropriate RG schemes, such as the MS scheme



The ground-state/free energy can be parametrized as

F(θ, T ) ≡ F (θ, T ) − F (0, T ) =
1

2
χ(T )θ2s(θ, T )

χ(T ) =
R

d4x〈q(x)q(0)〉θ=0 = 〈Q2〉θ=0/V4 is the topological susceptibility,

s(θ, T ) is a dimensionless even function of θ such that s(0, T ) = 1.

Analyticity at θ = 0 (CP is not broken at θ = 0, Vafa, Witten, PRL 1984) →
s(θ, T ) = 1 + b2(T )θ2 + b4(T )θ4 + · · · , (V, Panagopoulos, PhysRep 2009)

bi are dimensionless RG invariant quantities,

related to the zero-momentum n-point correlation functions of q(x), e.g.

b2 = −χ4/(12χ) and χ4 =
R

d4x1d
4x2d

4x3〈q(0)q(x1)q(x2)q(x3)〉c|θ=0, and

the cumulants of P (Q).

If b2n = 0 then the distribution is Gaussian P (Q) = 1√
2π〈Q2〉

exp
“

− Q2

2〈Q2〉

”



Within the large-N framework (N → ∞, g2N fixed) the U(1)A

problem is explained by a θ dependence at the leading 1/N order

WV relations: χ =
f2

s m2
s

4Nf
or

4Nf

f2
π

χ = m2
η′ + m2

η − 2m2
K (Witten, Veneziano, 1979)

Large-N scaling to Lθ = 1
4
F a

µν(x)F a
µν(x) − iθ g2

64π2 ǫµνρσF a
µν(x)F a

ρσ(x)

−→ the relevant scaling variable is θ̄ ≡ θ/N

f(θ) ≡
F (θ) − F (0)

σ2
=

1

2
Cθ2(1 + b2θ

2 + b4θ
4 + ...) = N2f̄(θ̄)

f̄(θ̄) has a nontrivial large-N limit: 1
2
C∞θ̄2(1 + b̄2θ̄

2 + b̄4θ̄
4 + · · ·),

where C ≡ χ/σ2 = C∞ + c2/N
2 + ..., and b2j = b̄2j/N

2j + ....

A multibranched F (θ), F (θ) − F (0) = AMink (θ + 2πk)2 + O (1/N) (Witten, AP

1980, PRL 1998), avoids the apparent incompatibility with periodicity in θ.



Semiclassically θ dependence arises from instantons.

The one-instanton contribution e−8π2/g2

eiθ =
“

e−8π2/(g2N)eiθ/N
”N

suggests an exponentially small θ dep. This conclusion is incorrect:

the instanton gas approximation fails due to infrared divergences.

At finite temperature, T provides the infrared cutoff to the

instanton-size distribution, nI(ρ) ∼ e−S(AI ) ∼ e−[8π2/g2+2N(πρT )2].

(Gross,Pisarski,Yaffe, RMP 1981)

Dilute instanton-gas (DIG) approximation at finite T summing

over n+ instantons and n− antiinstantons:

Zθ = Tr e−Hθ/T ≈
X 1

n+!n−!
(V4D)n++n−e

−
8π2(n++n

−
)

g2 +iθ(n+−n−)

= exp
h

cosθ × 2V4D × e−8π2/g2
i

therefore F(θ, T ) ≡ F (θ, T ) − F (0, T ) ≈ χ(T ) (1 − cos θ)



At high T ... dilute instanton-gas (DIG) approximation

At one loop ∂F/∂θ = sinθ
∫
∞

0
dρn

I
(ρ) ∼ sinθ × T 4e−8π2/g2(T )

F(θ, T ) ≈ χ(T ) (1 − cos θ) , χ(T ) ≈ T 4 exp[−8π2/g2(T )] ∼ T−
11
3 N+4,

using 8π2/g2(T ) ≈ (11/3)N ln(T/Λ) + O(ln ln T/ ln2 T )

DIG is a good approximation when the overlap between instantons

becomes negligible, thus at large T where χ(T ) is suppressed

The high-T θ dependence qualitatively differs from that at T = 0:

(•) analytic and periodic θ dependence

(•) The large-N scaling is not realized by the DIG approximation: the

relevant variable for the instanton gas is θ, and not θ/N

(•) χ(T ) gets exponentially suppressed in the large-N regime, suggesting a

rapid decrease of the topological activity with increasing N at high T



• The low-T and high-T phases are separated by a 1st-order

deconfinement transition, at Tc/
√

σ ≈ 0.545(2) + 0.46(2)/N2

(Lucini, etal, 2004,2012) getting stronger with increasing N , Lh ∼ N2

• for T ≪ Tc → large-N scaling with θ/N as scaling variable →
χ/σ2 ≈ C∞ + c/N2 and bk ≈ b̄k/Nk.

Does it extend up to T−

c ?

• for T ≫ Tc → analytic θ dependence by DIG approximation:

F ≈ χ(T )(1 − cosθ) with χ(T ) ∼ T−
11
3 N+4.

Does it extend down to T+
c ?

Working hypothesis: The change between the low-T and high-T θ

dependence occurs around the deconfinement transition.

Some hints also from models like ADS-CFT, holographic models, etc... (Witten,

PRL 1998; Parnashev, Zhitnisky PRD 1998; Unsal PRD 2012, etc)



Quantitative studies of θ dependence by MC simulations of the
Wilson lattice formulation

Z =

Z

[dU ] exp(−SL), SL = −2a4

g2
0

X

ReTr [Uµ(x)Uν(x + aµ̂)U†
µ(x + aν̂)U†

ν (x)]

The complex nature of the θ term prohibits MC simulations at θ 6= 0.

Expansion around θ = 0: F (θ) − F (0)) = 1
2
χθ2(1 + b2θ

2 + b4θ
4 + ...)

χ and b2n from correlation functions 〈q(x1)q(x2)...q(x2n)〉 at θ = 0,

b2 = − χ4
12χ

, χ4 =
1

V

ˆ

〈Q4〉 − 3〈Q2〉2
˜

θ=0
, Q =

X

x

q(x)

b4 = χ6
360χ

, χ6 =
1

V

ˆ

〈Q6〉 − 15〈Q2〉〈Q4〉 + 30〈Q2〉3
˜

θ=0

In the continuum limit, b2k,L ≈ b2k + a2σ2
for a → 0

b2n → deviations from a Gaussian P (Q) = 1√
2π〈Q2〉

exp
“

− Q2

2〈Q2〉

”

Various methods to compute Q, based on smoothing, off-equilibrium, fermionic

index, GW Dirac operators, ...



θ dependence at T = 0

• χ ≡ ∂2F (θ)/∂θ2|θ=0 6= 0 for SU(3): χ/σ2 = 0.028(2) by various methods

• Nonzero large-N limit: χ/σ2 = 0.022(2), investigated by MC simulations

for N > 3 (by Cundy, Del Debbio, Lucini, Panagopoulos, Teper, V., Wenger, ... They support

the expected large-N behavior: χ/σ2 = C∞ + c2/N
2

• Nonzero higher-order terms of the expansion around θ = 0,

F (θ) − F (0) = 1
2
χθ2(1 + b2θ2 + b4θ4 + ...),

SU(3) estimates: b2 = −0.026(3) and |b4| . 0.001

(using various methods to determine Q)

• Vanishing large-N limit of bk = O(N−k),

results consistent with b2 ≈ b̄2/N
2, b̄2 ≈ −0.2,

see the plot of N2b2 vs N
3 4 5 6

N

-0.8

-0.4

0.0

N
2
b

2

smoothing,         Del Debbio, Panagopoulos, V, JHEP 2002
off-equilibrium,   D’Elia, NP 2003
overlap,              Giusti, Petrarca, Taglienti, PRD 2007
imaginary θ,        Panagopoulos, V, JHEP 2013
smoothing,         Bonati, D’Elia, Panagopoulos, V,

Deviations from a simple Gaussian behavior are already small at N = 3.

bk requires large statistics, due to the cancellation of volume factors



• χ at finite T

Several MC results (Alles, Bonati,

Del Debbio, D’Elia, Di Giacomo, Lucini,

Panagopoulos, Teper, V., Wenger, ...)

χ(T )/χ(T = 0) vs t ≡ T/Tc−1

across the transition −→ -0.1 0.0 0.1
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• χ remains substantially unchanged in the low-T confined phase.

This also suggests Tc(θ) ≈ Tc + c θ2/N2
(D’Elia, Negro, PRL 2012)

• A sharp change across the first-order transition, likely discontinuous

• In the high-T phase χ shows a clear suppression, which becomes

stronger with increasing N , in qualitative agreement with one-loop DIG

χ(T ) ∼ T− 11
3

N+4 for T ≫ Tc, but larger T are necessary for a quantitative check

of the one-loop DIG approximation of χ(T )



• Higher-order terms of F (θ, T ) = 1
2χθ2(1 + b2θ

2 + b4θ
4 + · · ·) provide

a more significant probe of DIG regimes, avoiding the problem of the logarithmic

corrections of the prefactor

High-statistics MC for N = 3, 6 and

Lt = 5, 6, 10, 12 (smoothing techniques

for Q), to check large-N scaling and con-

tinuum limit.

(Bonati, D’Elia, Panagopoulos, V, PRL 2013)

b2k are compared with T = 0 results

and DIG approx −→
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• Sharp change across the deconfinement transition, likely discontinuous

• For T > Tc, rapid approach to DIG θ dependence, with deviations

visible only for t ≈ 0.05. The approach appears faster with increasing N .

• b4 = 0.0024(4) for N = 6 and t = 0.09 to be compared with b4 = 1/360.



Deviations from dilute instanton gas at t ≡ (T − Tc)/Tc . 0.1

The approach to the DIG regime can be parametrized by a virial-like

expansion: the asymptotic formula is corrected by a term proportional to

the square of the instanton density

Since χ(T ) ∼ ρinst,

F(θ, T ) ≈ χ(1 − cos θ) + χ2κ(θ) + O(χ3)

κ(θ) =
P

k=2 c2k sin(θ/2)2k

Thus, b2 = − 1
12 + 1

8 c4χ + O(χ2).
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The behavior χ ∼ T−11N/3+4 implies a rapid approach to the asymptotic

DIG value, which becomes faster with increasing N .

The hard-core approximation of instanton interactions give a negative correction,

i.e. c4 < 0, explaining the approach from below to the DIG value b2 = −1/12.



Summary of the θ dependence in 4D SU(N) gauge theories

F(θ, T ) ≡ F (θ, T ) − F (0, T ) =
1

2
χ(T )θ2

`

1 + b2(T )θ2 + b4(T )θ4 + · · ·
´

• Low-T phase characterized by a large-N scaling with θ/N as

relevant variable: χ/σ2 ≈ C∞ + c/N2 and bk ≈ b̄k/Nk

• Sharp change across the deconfinement transition, likely

discontinuous, which becomes sharper with increasing N .

• High-T phase: large-N scaling is lost, the topological activity is largely

reduced. The dilute instanton-gas regime sets in just above Tc,

giving an analytic dependence F (θ) − F (0) ≈ χ(T )(1 − cosθ).

• MC simulations nicely support the above scenario.

• Analog results expected in full QCD, which would imply suppressed
U(1)A breaking in the quark-gluon plasma. Around Tc, this may affect the

nature of the chiral transition, because a suppressed U(1)A breaking would lead

to the [ U(2)L ⊗ U(2)R ] / U(2)V universality class, different from O(4)/O(3).



Further slides ...

Some results from the smoothing

method.

Distribution of Q, for N = 3, β = 6.2

at θ = 0 and θi ≈ 1.5
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Semiclassically θ dependence arises from instantons

Nontrivial θ dependence from the expansion of the functional integral in
the sector with Q = n about the minimum action with Q = n.

Z = Tr e−H/T =

Z

DAe−S(A)+iθQ(A)

=
X

n

eiθn

Z

DAδ(Q − n)e−S(A) ≈
X

n

eiθn

Z

du e−S(AI (u))Det[Q(AI(u))]

Instantons: classical finite-energy solutions AI(u) which minimize the
action within each topological sector, tunneling among n-vacua

Aµ
I = 2ηµν,aτa xν

x2 + ρ2
, S(AI) = 8π2/g2

The one-instanton contribution e−8π2/g2

eiθ =
“

e−8π2/(g2N)eiθ/N
”N

appears exponentially suppressed in the large-N limit, suggesting that the

θ dependence is exponentially small in N .

This conclusion is incorrect, the instanton gas approximation fails due to

infrared divergences.



Dilute instanton-gas (DIG) approximation at finite T

At finite T , due to electric screening, only fields with integer Q can
contribute to the functional integral: periodic instantons in β = 1/T
(Gross, Pisarski, Yaffe, RMP 1981)

Aµ
I = Πη̄µν,a(τa/2i)∂νΠ−1, Π(t,x) = 1 +

(πρ2T/r)sinh(2πTr)

cos(2πTr) − cosh(2πTt)

At finite temperature, T plays the role of infrared cutoff,

nI(ρ) ∼ e−S(AI ) ∼ e−[8π2/g2+2N(πρT )2]

DIG approximation summing over n+ instantons and n− antiinstantons:

Zθ = Tr e−Hθ/T ≈
X 1

n+!n−!
(V4D)n++n−e

−
8π2(n++n

−
)

g2 +iθ(n+−n−)

= exp
h

cosθ × 2V4D × e−8π2/g2
i

therefore F(θ, T ) ≡ F (θ, T ) − F (0, T ) ≈ χ(T ) (1 − cos θ)


