# Pure gauge glueball behavior at finite temperature.<sup>1</sup>

July 31, 2013

<sup>1</sup>M.Caselle, R.Pellegrini

(

July 31, 2013 1 / 16

## Index:

#### Introduction and motivation

#### 2 New proposal

3 A test in the 3d gauge Ising model.

#### 4 Results

### 5 Conclusion

イロト イヨト イヨト イヨ

- The zero temperature glueball masses are by now known with good precision  ${\scriptstyle 1 \atop .}$
- At finite temperature the standard approach is to compute a temporal correlator <sup>2</sup>.
- The spectrum computed in this way is almost constant as the temperature increases, and insensitive to the deconfinement transition <sup>2</sup>.

イロト 不得下 イヨト イヨト

 $<sup>^{1}</sup>$ Teper et al. 2004, Lucini et al. 2010, Lucini et al. 2012  $^{2}$ Ishii et al. 2002

# The Isgur-Paton model

- The Isgur-Paton model is a very successful phenomenological model of glueballs <sup>3</sup>.
- The glueballs are considered "closed flux tubes" kept together by the same string tension of the interquark potential.
- The model predicts glueball masses as adimensional ratios  $\frac{m_i(0)}{\sqrt{\sigma(0)}}$ .
- Substituting the zero temperature string tension with the finite temperature string tension we obtain

$$m_i(T) = rac{m_i(0)}{\sqrt{\sigma(0)}} \sqrt{\sigma(T)}.$$

<sup>3</sup>N. Isgur and J. E. Paton 1985

# QCD thermodynamics

- For  $T < T_c$  the thermodynamics seems compatible with the one predicted by a free glueball gas <sup>4</sup>.
- In the deconfined phase  $T > T_c$  the thermodynamics is instead well described by a gas of free gluons<sup>4</sup>.
- If the glueball spectrum was insensitive to the deconfining transition the glueball would be present also in this phase.
- This would give an extra contribution to the thermodynamics fully incompatible with lattice measurements.

<sup>4</sup>Meyer 2009, Panero 2009, Caselle et al. 2011, Caselle et al. 2012 ( ) + ( ) + ( )

- These observations suggest that with the standard approach one is probably measuring some finite size scale.
- The relation with the glueball spectrum is probably similar to the relation between the spatial string tension  $\sigma_s$  and the finite temperature string tension  $\sigma(T)$ .

イロト 不得下 イヨト イヨト

### A new observable

- We propose an alternative method to extract finite T glueball masses.
- To ensure the correct finite *T* behaviour our observable is built using exclusively Polyakov loops *P*.
- The simplest observable with the correct quantum numbers is a pair of nearby Polyakov loops

 $M(x) = P(x)P^{\dagger}(x+a)$ 

• The glueball mass will be extracted by the large R behaviour of the correlator

 $G(R, T) = \langle M(0)M(R) \rangle - \langle M \rangle^2 \propto_{R \to \infty} e^{-M_0(T)R}$ 

イロト イポト イヨト イヨト

.

### The correlator



Figure: The glueball correlator discussed in the text.

July 31, 2013 8 / 16

イロト イヨト イヨト イヨ

# A test in 3d gauge Ising model.

- The Ising model is a perfect model to test our observable.
- There exists very precise estimate of the zero temperature spectrum <sup>5</sup>, that can be compared with our results in the low T regime, in particular

 $m_0=3.15(5)\sqrt{\sigma(0)}$ 

- We can predict the behavior of the correlator G(R, T) in the vicinity of  $T_c$  using dimensional reduction <sup>6</sup>.
- In this limit our observable is equivalent to the energy-energy correlator  $G_{\epsilon}$  of the 2d Ising model.

<sup>5</sup>Caselle et al. 1997 <sup>6</sup>Svetitsky Yaffe 1982

(

イロト 不得下 イヨト イヨト

# G(R,T) near $T_c$

• From the exact solution of the 2d Ising model we know that at temperature close enough to  $T_c$  a new mass scale should appear, which is known to be

$$m_s(T) = 2 \frac{\sigma(T)}{T}$$

• To summarize; we expect two relevant scales:  $m_0(T) \propto \sqrt{\sigma(T)}$  is the glueball mass dominant at low temperature, the other scale  $m_s(T) = \frac{2\sigma(T)}{T}$  should appear at high temperature.

# Simulation settings

• We performed three sets of simulation at different values of the gauge coupling.

| β        | $\frac{1}{T_c}$ | Ls  | Nt                        | R                 |
|----------|-----------------|-----|---------------------------|-------------------|
| 0.743543 | 5.67 a          | 90  | 7,8,9                     | $6 \le R \le 20$  |
| 0.751805 | 8 a             | 90  | 9,10,11,12,13,14,20,56,64 | $8 \le R \le 22$  |
| 0.756427 | 12 a            | 120 | 20                        | $12 \le R \le 33$ |

Table: For each of the three  $\beta$  values we report the corresponding critical temperature  $T_c$  and the values of  $L_s$ , N and R that we studied.

- For all these values we extracted the correlator G(R, T).
- In order to build adimensional ratios  $\frac{m_i(T)}{\sqrt{(\sigma(T))}}$  we also computed the finite temperature string tension  $\sigma(T)$  from Polyakov loops in a separate simulation.

### Results

- We found two different behaviours.
- For low values of the temperature  $\frac{T}{T_c} \lesssim 0.6$  the data were perfectly fitted by

$$G(R, T) = a_0(T) \frac{e^{-m_0(T)R}}{\sqrt{R}}$$

• At higher values of the temperature  $\frac{T}{T_c}\gtrsim 0.6$ 

$$G(R, T) = a_{s}(T) \frac{e^{-m_{s}(T)R}}{R^{2}} + a_{0}(T) \frac{e^{-m_{0}(T)R}}{\sqrt{R}}$$

イロト イヨト イヨト イヨ

Results

| β        | $\frac{T}{T}$ | $\sigma(T)$ | $\frac{m_s(T)T}{\sigma(T)}$ | $\frac{m_s(T)}{\sqrt{T}}$ | $\frac{m_0(T)}{\sqrt{T}}$ |
|----------|---------------|-------------|-----------------------------|---------------------------|---------------------------|
|          | · c           |             | 0(1)                        | $\sqrt{\sigma(I)}$        | $\sqrt{\sigma(1)}$        |
| 0.743543 | 0.8           | 0.00961     | 2.03(4)                     | 1.39(3)                   | 3.1(2)                    |
| 0.743543 | 0.7           | 0.01315     | 1.89(5)                     | 1.73(5)                   | 3.1(1)                    |
| 0.743543 | 0.62          | 0.01542     | 1.98(5)                     | 2.21(6)                   | 3.14(8)                   |
| 0.751805 | 0.89          | 0.00268     | 2.2(2)                      | 1.02(8)                   | 3.0(3)                    |
| 0.751805 | 0.8           | 0.00444     | 1.97(5)                     | 1.31(3)                   | 2.9(3)                    |
| 0.751805 | 0.73          | 0.00566     | 1.86(8)                     | 1.54(7)                   | 2.9(1)                    |
| 0.751805 | 0.67          | 0.00654     |                             |                           | 3.3(1)                    |
| 0.751805 | 0.62          | 0.00720     |                             |                           | 3.23(3)                   |
| 0.751805 | 0.57          | 0.00771     |                             |                           | 3.29(5)                   |
| 0.751805 | 0.4           | 0.00922     |                             |                           | 3.25(4)                   |
| 0.751805 | 0.14          | 0.01037     |                             |                           | 3.14(3)                   |
| 0.751805 | 0.125         | 0.01040     |                             |                           | 3.21(2)                   |
| 0.756427 | 0.6           | 0.00326     |                             |                           | 3.29(6)                   |

Table: Values of  $\sigma(T)$ ,  $\frac{m_s(T)}{\sigma(T)}$ ,  $\frac{m_s(T)}{\sqrt{\sigma(T)}}$  and  $\frac{m_0(T)}{\sqrt{\sigma(T)}}$ .

イロン イロン イヨン イヨン

## Results



Figure:  $\frac{m_0}{\sqrt{\sigma(T)}}$  and  $\frac{m_s}{\sqrt{\sigma(T)}}$  plotted as a function of  $\frac{T}{T_c}$  for  $\beta_1 = 0.743543$ ,  $\beta_2 = 0.751805$  and  $\beta_3 = 0.756427$ . The two curves correspond to the two expected scaling behaviours:  $m_0(T) \sim 3.15\sqrt{\sigma(T)}$  and  $m_s(T) = 2\sigma(T)/T$ .

・ロト ・回 ・ ・ ヨト

# Conclusion

• The most important message of our analysis is that the effective thermal mass of the lightest glueball is a function of the temperature.

 $m_0(T)\propto \sqrt{\sigma(T)}$ 

- It vanishes as the critical temperature is approached  $T \rightarrow T_c$ .
- The previous results suggest that the Isgur-Paton model is also valid at finite temperature.

# Conclusion

- The scaling behaviour predicted by the Isgur-Paton  $\sqrt{\sigma(T)}$  model can also be riconciliated with the different Svetitsky-Yaffe behaviour  $\frac{\sigma(T)}{T}$  thanks to the appearance of a new mass scale  $m_s$ .
- This new scale *m<sub>s</sub>* should measure the interaction between a quark and an antiquark belonging to different mesons.
- This agrees with the intuitive picture of the melting of mesons into individual quarks approaching the deconfinement transition from below.