Introduction 00 B; Analysis 0000000

K and D oscillations in the Standard Model and its extensions from $N_f = 2 + 1 + 1$ Twisted Mass LQCD

Nuria Carrasco Vela

in collaboration with

P.Dimopoulos, R.Frezzotti, V.Giménez, V.Lubicz,

G.C.Rossi, F.Sanfilippo, S.Simula and C.Tarantino

on behalf of the ETM collaboration

Departamento de Física Teórica-IFIC Universitat de Valencia-CSIC

Lattice 2013, Mainz, August 2013

Introduction 00	Simulation details 00	B; Analysis 0000000	Results	Conclusions
Outline				

- Meson oscillations: B-parameters
- 2 Simulation details
 - $N_f = 2 + 1 + 1$ B-parameters
 - $N_f = 4$ Renormalization Constants
- 3 $K^0 \overline{K^0}$ and $D^0 \overline{D^0}$ B-parameters
 - Bare matrix elements: plateaux
 - Extraction of RCs
 - Extrapolation to the physical point
- Preliminary results, error budget and comparison

5 Conclusions

$$\langle \overline{K}^{0} | \mathcal{H}_{\text{eff}}^{\Delta F=2} | \mathcal{K}^{0} \rangle = \frac{G_{F}^{2} M_{W}^{2}}{16 \pi^{2}} \left\{ \sum_{i=1}^{5} \underbrace{C_{i}(\mu)}_{i=1} \underbrace{\langle \overline{K}^{0} | \hat{Q}_{i}(\mu) | \mathcal{K}^{0} \rangle}_{\equiv \hat{B}_{i} \langle \overline{K}^{0} | Q_{i} | \mathcal{K}^{0} \rangle_{VIA}} \right\}$$

UTfit Collaboration. M.Bona et al. JHEP 0803 (2008) 049

$$\begin{array}{l} Q_{1} = \left[\bar{h}^{a}\gamma^{\mu}(1-\gamma_{5})l^{a}\right]\left[\bar{h}^{b}\gamma_{\mu}(1-\gamma_{5})l^{b}\right] & Q_{4} = \left[\bar{h}^{a}(1-\gamma_{5})l^{a}\right]\left[\bar{h}^{b}(1+\gamma_{5})l^{b}\right] \\ Q_{2} = \left[\bar{h}^{a}(1-\gamma_{5})l^{a}\right]\left[\bar{h}^{b}(1-\gamma_{5})l^{b}\right] & Q_{5} = \left[\bar{h}^{a}(1-\gamma_{5})l^{b}\right]\left[\bar{h}^{b}(1+\gamma_{5})l^{a}\right] \\ Q_{3} = \left[\bar{h}^{a}(1-\gamma_{5})l^{b}\right]\left[\bar{h}^{b}(1-\gamma_{5})l^{a}\right] & \end{array}$$

Introduction Simulation details B; Analysis Results Conclusions oo Nodel independent constraints and NP from the UT analysis

The effective hamiltonian is parametrized by a Wilson coefficient of the form:

$$C_i(\Lambda) = rac{F_i L_i}{\Lambda^2} o \Lambda = \sqrt{rac{F_i L_i}{C_i(\Lambda)}}$$

 \rightarrow Phenomenological allowed range for each $C_i \rightarrow$ lower bound of Λ

• F_i = NP coupling, depends on the flavor struture of the NP model

- MFV: $F_1 = F_{SM} \sim (V_{tq} V^*_{tq'})^2$ and $F_{i
 eq 1} = 0$
- Generic flavor structure: $|F_i| \sim 1$

L_i = loop factor:

• L=1: tree-level FCNC

• L=
$$\alpha_W^2$$
: SM

• $L = \alpha_{NP}^2$: NP FCNC at loop level

• Λ = scale of NP, typical mass of the NP particles involved in the mixing UTfit provides lower bounds for the scale of NP

$F_i \sim L_i \sim 1$	<i>c</i> 1	<i>C</i> ₂	C ₃	C4	C5
$\Lambda(imes 10^4 ext{TeV}) ext{ from } K^0 - \overline{K}^0$	~ 1.7	~ 22	~ 11	\sim 46	~ 27
$\Lambda(imes 10^4{ m TeV})$ from $D^0-\overline{D}^0$	~ 0.2	~ 0.7	~ 0.1	~ 1.2	~ 0.3

lntrod 00	luction	Simulation details ●○	B; Analysis 0000000	Results	Conclusions
Sin	nulation de	etails			
	 Iwasaki g Wilson T 	luon action wisted Mass Action a	t maximal twist with /	$V_{f} = 2 + 1 + 1$ se	a quarks
	(details in <i>R. B</i>	aron et al. JHEP, 06:	111, 2010, 1004.5284)	.,	
	 Osterwald renormali 	ler-Seiler <mark>valence qua</mark> zation pattern	$rk action o \mathcal{O}(a) imp$	rovement & conti	nuum like
	(R. Frezzotti ar	nd G. C. Rossi. JHEP	, 10:070, 2004, hep-lat	:/0407002)	
	RCs: N _f	= 4 Twisted Mass ac	tion out of maximal tw	vist	

(B.Blossier et al.PoS, LATTICE2011:233, 2011, 1112.1540)

- Three lattice spacings $\beta = 1.90, 1.95, 2.10$ which correspond to a = 0.09, 0.08, 0.06 fm ($a^{-1}=2.2, 2.5, 3.2$ GeV)
- Three volumes: $24^3 \times 48$, $32^3 \times 64$, $48^3 \times 96 \rightarrow L \approx 2,3$ fm
- Unitary setup: $\mu_{
 m sea}=\mu_\ell$. 1 light valence quark mass for each sea quark mass.
- $M_{\pi} = [220:500]$ MeV
- Three valence "strange" quark masses around the physical strange. Local propagators.
- Three valence "charmed" quark masses around the physical charm. Smeared propagators.
- T/2 separation between sources for $\overline{K}^0 K^0$ while $T_{sep} < T/2$ for $\overline{D}^0 D^0$
- Stochastic propagators

- RCs are computed non perturbatively in the RI-MOM scheme.
- Dedicated $N_f = 4$ degenerate sea quark gauge configurations
- Instabilities in tuning to maximal twist \rightarrow work out of maximal twist.

$\mathcal{O}(a)$ improvement out of maximal twist

We average over RC estimators computed at equal value of μ but opposite θ (tan $\theta = Z_A m_{\rm PCAC}/\mu$) $\frac{Z[\theta] + Z[-\theta]}{2}$ is free of $\mathcal{O}(a)$ lattice artifacts

R. Frezzotti and G. C. Rossi. JHEP, 10:070, 2004, hep-lat/0407002.

p/m ensembles: for each β , and for each M^{sea} we produce two ensembles with (nearly) opposite values of θ - positive and negative values of θ (or m_{PCAC}) - with the same μ

Introduction Simulation details B; Analysis Results Conclusions Extracting B-parameters from lattice correlators $\langle \overline{P}^{0} | \hat{Q}_{i} | P^{0} \rangle = \hat{B}_{i} \langle \overline{P^{0}} | \hat{Q}_{i} | P^{0} \rangle_{VIA} = \begin{cases} \dot{B}_{1} \xi_{1} f_{P}^{2} M_{P}^{2} \\ \dot{B}_{i} \xi_{i} \left[\frac{M_{P}}{\hat{m}_{i} + \hat{m}_{i}} \right]^{2} f_{P}^{2} M_{P}^{2} & i \geq 2 \end{cases}$ $\xi_i = \{8/3, -5/3, 1/3, 2, 2/3\}$ $\rightarrow \left\{ \begin{array}{c} \frac{1}{\xi_{1}} \frac{\hat{C}_{1}^{(3)}(t)}{\hat{C}_{P5A0}^{(2)}(-t)\hat{C}_{P5A0}^{(2)}(t-T_{sep})} \xrightarrow{0 \ll t \ll T_{sep}} \frac{\langle \overline{P}^{0} | \hat{Q}_{i} | P^{0} \rangle}{\xi_{1} \langle \overline{P}^{0} | \hat{A}_{0} | 0 \rangle \langle 0 | \hat{A}_{0} | P^{0} \rangle} = \hat{B}_{1} \\ \frac{1}{\xi_{i}} \frac{\hat{C}_{i}^{(3)}(t)}{\hat{C}_{P5P5}^{(2)}(-t)\hat{C}_{P5P5}^{(2)}(t-T_{sep})} \xrightarrow{0 \ll t \ll T_{sep}} \frac{\langle \overline{P}^{0} | \hat{Q}_{i} | P^{0} \rangle}{\xi_{i} \langle \overline{P}^{0} | \hat{P}_{5} | 0 \rangle \langle 0 | \hat{P}_{5} | P^{0} \rangle} = \hat{B}_{i} \quad i \ge 2 \end{array} \right.$ Meson walls $\mathcal{P}_{5}(t_{0}) = \sum_{\vec{y}} \bar{h}(\vec{y}, t_{0})\gamma_{5}I(\vec{y}, t_{0}) = \sum_{\vec{y}} P_{5}(\vec{y}) \quad ; \mathcal{P}_{5}(t_{0})|0\rangle = P_{0}$ Three- and two-point correlators $C_{P5P5}^{(2)}(t) = \sum_{\vec{x}} \langle 0|A_0(\vec{x}, t))\mathcal{P}_5(t_0)|0\rangle$ $C_{P5P5}^{(2)}(t) = \sum_{\vec{x}} \langle 0|P_5(\vec{x}, t))\mathcal{P}_5(t_0)|0\rangle$ $C_i^{(3)}(t) = \sum_{\vec{x}} \langle 0|\mathcal{P}_5'(T_{sep})Q_i(\vec{x}, t)\mathcal{P}_5(0)|0\rangle$

Example for the smallest lattice spacing (a \sim 0.06 fm) with the lightest sea mass (M_{π} =220MeV)

$$\hat{R}_{i} = \frac{\langle \overline{P}^{0} | \hat{Q}_{i} | P^{0} \rangle}{\langle \overline{P}^{0} | \hat{Q}_{1} | P^{0} \rangle} \sim \frac{BSM}{SM} \quad i = 2, 3, 4, 5 \quad \rightarrow \quad \frac{C_{i}^{(3)}(t)}{C_{1}^{(3)}(t)} \xrightarrow{0 \ll t \ll T_{sep}} R_{i}$$

To compensate the chiral vanishing of the $\langle \overline{P}^0 | \hat{Q}_1 | P^0 \rangle$ we define the rescaled quantity

(R.Babich et al Phys. Rev. D74(2006)073009 hep-lat/0605016)

$$\tilde{R}_{i} = \left(\frac{f_{P}}{M_{P}}\right)_{exp}^{2} \left[\left(\frac{M_{hl}}{F_{hl}}\right)^{2} R_{i} \right]_{la}$$

Example for the smallest lattice spacing (a \sim 0.06 fm) with the lightest sea mass (M_{π} =220MeV)

Introduction 00	Simulation details	B; Analysis ०००●०००	Results	Conclusions
Renormaliz	ation pattern			
ز On the lattice, operators of the	$\overline{P}^0 Q_i P^0 angle=c_w(\mu)\langle\overline{P}^0 \dot{Q}$ the Wilson term induces same dimensionality but	$\hat{Q}_i(\mu) P^0 angle=c_w(\mu)Z_{ij}$ explicit chiral symmetric with the wrong naive	$(a\mu) \langle \overline{P}^0 Q_j(a) P^0 angle$ etry breaking $ ightarrow$ m e chirality.	ixing with
OS valence	action			
$S^{ m val,OS} =$	$\sum \sum \overline{q}_f(x) \gamma \tilde{\nabla}$	$r - i\gamma_5 a \frac{r_f}{2} \sum \nabla^*_{\mu} \nabla_{\mu}$	$-i\gamma_5 M_{cr}(r_f)+m_f$	$q_f(x)$

 \rightarrow Continuum-like renormalization pattern for four fermion operator, with absence of wrong chirality mixing, if (*R.Frezzotti and G.C. Rossi. JHEP*,2004) $r_{h} = r_{b'} = r_{l} = -r'_{l}$

 $f=\overline{h,h'}, l, l' \times$

$$\hat{Q} = Z_{\chi}[I + \Delta]Q$$

$$Z_{\chi} = \begin{pmatrix} Z_{11} & 0 & 0 & 0 & 0 \\ 0 & Z_{22} & Z_{23} & 0 & 0 \\ 0 & Z_{32} & Z_{33} & 0 & 0 \\ 0 & 0 & 0 & Z_{44} & Z_{45} \\ 0 & 0 & 0 & Z_{44} & Z_{55} \end{pmatrix} \quad \Delta = \begin{pmatrix} 0 & \Delta_{12} & \Delta_{13} & \Delta_{14} & \Delta_{15} \\ \Delta_{11} & 0 & 0 & \Delta_{24} & \Delta_{25} \\ \Delta_{31} & 0 & 0 & \Delta_{34} & \Delta_{35} \\ \Delta_{41} & \Delta^{42} & \Delta_{43} & 0 & 0 \\ \Delta_{51} & \Delta_{52} & \Delta_{53} & 0 & 0 \end{pmatrix} \sim \mathcal{O}(a^2)$$

$$\hat{B}_{1} = \frac{Z_{11}}{Z_{V}Z_{A}}B_{1} \quad \hat{B}_{i} = \frac{Z_{ij}}{Z_{P}Z_{5}}B_{j} \quad \hat{R}_{i} = \frac{Z_{ij}}{Z_{11}}R_{i}$$

This setup has been successfully used in the ETMC $N_f = 2$ *B*-parameter analysis *ETMC*, *Phys Rev.* D83 (2011) 014505 1009.5606 and *ETMC*. JHEP, 1303:089, 2013, 1207.1287

l n trodu ction 00	Simulation details	<i>B</i> ; Analy 0000€0	∕sis ○	Results	; (Conclusions
RC Analysis						
Z_V from WI <i>M.Constantinou e</i> $Z_V \partial_0 C_{P5V0}^{(2)}(t) =$ 2E RCs	t al. JHEP1008(2010) $(\mu_1 + \mu_2)C^{(2)}_{P5P5}(t)$	068) hep-lat:1	004.115			
$Z_{\Gamma} Z_{q}^{-1} \mathcal{V}_{\Gamma} = 1$ $\mathcal{V}_{\Gamma} = \text{Tr}[P\Lambda_{\Gamma}]$ tree-level projecto amputated 2F GF	$r: P\Lambda_{\Gamma}^{(0)} = 1$ $: \Lambda_{\Gamma} = S^{-1}G_{\Gamma}S^{-1}$	$Z = Z_q^2 \left[D^2 \right]$ dynamical m tree-level pr amputated 4	r] ⁻¹ natrix: D = ojector: P 4F GF: A _r	$= \frac{P \wedge}{\Lambda^{(0)}} = I$ $u_{\Gamma^2} = S^{-1}$	$S^{-1}G_{\Gamma^1\Gamma^2}S^{-1}$	⁻¹ 5 ⁻¹
Two types of p^2 -fit f $\mathcal{O}(a^2p^2)$ lattice artif • M1: linear cor	to subtract the residua facts: nbined fit in	$a^{2}p^{2})$	0.48 0.47 0.46 0.45	••••••••••••••••••••••••••••••••••••••	$\beta = 1.$ $\beta = 1.$ $\beta = 2.$	90
(full symbols) $1.5 \le a$ • M2: constant	$p^2 \tilde{p}^2 \leq 2.2$ fit in	$Z_{11}^{RI}(\mu_0^2 = a(\beta)^{-2}),$	0.44 0.43 0.42 0.41		ـــــــــــــــــــــــــــــــــــــ	
(open symbols) $p^2 \in [11]$. : 14] GeV ²	N	0.39	0.50 1.00	1.50 2.00 (ap̄) ²	2.50 3.00

GB-pole

q=p'-p=0

Specific care must be taken in the chiral extrapolation of $\mathcal{V}_{\mathcal{P}}$ and D_{ij} due to the coupling with the GB-pole $\propto M_{PS}^{-2}$

$$D_{ij}(M;a^2p^2) = D_{ij}^{(0)}(a^2p^2) + B_{ij}(a^2p^2)M + \frac{C_{ij}(a^2p^2)}{M_{PS}^2}$$

Example of GBP subtraction for D_{11} and D_{23} at the lightest sea quark mass of β =1.95 (a ~0.08fm)

Example of B_1 and B_2 ($K^0 - \overline{K}^0$) chiral and continuum extrapolation

Introduction 00	Simulation 00	details	B; Ana 00000	alysis	Results	Conclusions
Preliminary	results,	error	budget a	and	comparison	

Results in MS (Buras et al., Nucl. Phys., B586:397-426, 2000, hep-ph/0005183) at 3 GeV:

$K^0 - \overline{K}^0$							$D^0 - \overline{D}^0$		
<i>B</i> ₁	B ₂	B ₃	B ₄	<i>B</i> 5	<i>B</i> ₁	B ₂	B ₃	<i>B</i> ₄	<i>B</i> ₅
0.51(2)	0.46(2)	0.81(5)	0.76(3)	0.47(4)	0.76(4)	0.64(2)	1.02(7)	0.92(3)	0.95(5)

		$K^0 - \overline{K}^0$					$D^0 - \overline{D}^0$			
source of error (%)	<i>B</i> ₁	B ₂	B ₃	B_4	B_5	<i>B</i> ₁	<i>B</i> ₂	B ₃	B_4	B_5
stat.	2.4	2.0	2.5	2.1	4.2	4.2	2.2	5.7	2.4	2.7
$(corr+RC+\mu_{s/c})$										
syst.										
chira fit	1.2	1.0	1.0	1.2	1.2	0.1	0.1	0.1	0.7	0.7
RI-MOM	1.8	0.5	4.9	1.5	6.0	1.3	1.2	0.5	1.2	4.0
discr. effects	0.5	2.4	2.4	2.5	2.4	3.9	2.2	3.3	2.0	0.8
total	3.3	3.4	6.0	3.7	7.8	5.6	3.7	6.7	3.7	5.1

		Domain Wall TM Domain Wall OS-TM	(c.l.) (c.l.) (c.l.) (c.l.)
		Domain Wall Overlap OS/TM OS/TM	$\binom{(c.l.)}{(c.l.)}$
		Domain Wall Improved Wilson Staggered Domain Wall	(c.l.) (c.l.) (c.l.) (c.l.)
	H	OS/TM	(c.l.)
0.2 0.3 0.4 0.5 0.6	0.7 0.8 \hat{B}_{K}^{RGI}	0.9 1.0 1.1	1.2 1.3

	\overline{K}^{0}	$-K^0 \overline{MS}(3)$	Ī	$\overline{D}^0 - D^0$	₩S(3GeV)	
	This work	ETMC [1]	RBC-UKQCD [2]		This work	ETMC [3]
	$N_{f} = 2 + 1 + 1$	$N_f = 2$	$N_{f} = 2 + 1$	N _f	= 2 + 1 + 1	$N_f = 2$
	c .1	c .	$a\sim 0.086 fm$		c .	c .
B_1	0.51(2)	0.51(2)	0.517(4)	B_1	0.76(4)	0.75(2)
<i>B</i> ₂	0.46(2)	0.47(2)	0.43(5)	B ₂	0.64(2)	0.66(2)
<i>B</i> ₃	0.81(5)	0.78(4)	0.75(9)	B_3	1.02(7)	0.97(5)
B_4	0.76(4)	0.76(3)	0.69(7)	B_4	0.92(3)	0.91(4)
B 5	0.47(4)	0.58(3)	0.47(6)	B_5	0.95(5)	1.10(5)

[1] ETMC. JHEP, 1303:089, 2013, 1207.1287

[2] RBC and UKQCD Phys.Rev., D86:054028, 2012, 1206.5737

[3] ETMC. To be published

Results in MS (Buras et al., Nucl.Phys., B586:397-426, 2000, hep-ph/0005183) at 3 GeV:

$$\begin{array}{cccccccc} R_2 & R_3 & R_4 & R_5 \\ -15.1(6) & 5.4(3) & 30.1(1.5) & 6.0(3) \end{array}$$

source of								
error (%)	R ₂	R ₃	R_4	R_5		This work	ETMC [1]	RBC-UKQCD [2]
stat.	3.3	3.5	3.3	5.4	N	f = 2 + 1 + 1	$N_f = 2$	$N_f = 2 + 1$
$(\operatorname{corr}+\operatorname{RC}+\mu_{s/c})$						c .	c .	a \sim 0.086 fm
syst.					R ₂	-15.1(6)	-15.6(5)	-15.3(1.7)
chira fit	0.1	0.3	2.7	2.9	R ₃	5.4(3)	5.3(3)	5.4(0.6)
RI-MOM	0.1	3.5	1.1	4.8	R ₄	30.1(1.5)	28.6(9)	29.3(2.9)
discr. effects	2.7	2.7	2.8	2.3	R ₅	6.0(3)	7.8(4)	6.6(0.9)
tota	4.3	5.7	5.2	8.1	L			

[1] ETMC. JHEP, 1303:089, 2013, 1207.1287

[2] RBC and UKQCD Phys.Rev., D86:054028, 2012, 1206.5737

Introduction 00	Simulation details 00	B; Analysis 0000000	Results	Conclusions
Conclusions				

- Using data from $N_f = 2 + 1 + 1$ Twisted Mass simulations
 - with $a \sim [0.06 : 0.09]$ fm
 - and $M_\pi \sim$ [220 : 500] MeV

we have computed the SM and BSM contributions to $K^0 - \overline{K}^0$ and $D^0 - \overline{D}^0$ (complete basis of B_i parameters and BSM R_i parameters)

• $N_f = 2$ and $N_f = 2 + 1 + 1$ results are compatible \rightarrow There is not significant dependence in the number of dynamical sea quarks.

OUTLOOK

 Systematic effects due to the chiral extrapolations have to be considered with more accuracy → Results are still preliminary

• We plan to extend the analysis to $B^0 - \overline{B}^0$ and $B_s^0 - \overline{B}_s^0$ system with $N_f = 2 + 1 + 1$ dynamical sea quarks by applying the ratio method (See talk by Petros Dimopoulos with $N_f = 2$) Backup slides

$$\begin{split} D_{ij}(p)^{\text{corr.}} &= D_{ij}(p) - \frac{g^2}{16\pi^2} a^2 \left[p^2 \left(d_{ij}^{(1)} + d_{ij}^{(2)} \log(a^2 p^2) \right) + d_{ij}^{(3)} \frac{\sum_{\rho} \tilde{p}_{\rho}^4}{\tilde{p}^2} \right] \\ \mathcal{V}_{\Gamma}(p)^{\text{corr.}} &= \mathcal{V}_{\Gamma}(p) - \frac{g^2}{12\pi^2} a^2 \Big[\tilde{p}^2 (c_{\Gamma}^{(1)} + c_{\Gamma}^{(2)} \ln(a^2 \tilde{p}^2)) + c_{\Gamma}^{(3)} \frac{\sum_{\rho} \tilde{p}_{\rho}^4}{\tilde{p}^2} \Big] \\ \Sigma_1(p)^{\text{corr.}} &= \Sigma_1(p) - \frac{g^2}{12\pi^2} a^2 \Big[\tilde{p}^2 (c_q^{(1)} + c_q^{(2)} \ln(a^2 \tilde{p}^2)) + c_q^{(3)} \frac{\sum_{\rho} \tilde{p}_{\rho}^4}{\tilde{p}^2} \Big] \end{split}$$

