Topological Lattice Actions
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Probing universality in an extreme case
Testbed: non-linear c-models
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Are there still facets of universality ?
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Step Scaling Function
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IV. 2d XY Model (or O(2) Model)

Is there a Berezinskii-Kosterlitz-Thouless (BKT) transition
when vortices cost zero energy ?

A vortex-free phase transition, to be explored
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|I. Topological Lattice Actions

Usually we discretize some continuum Lagrangian, e.g.

L(B(@),0u8(2)) = Liae(®ar ~{Baa — Pa])

Universality : Different lattice formulations: same universality class,
determined by space-time dimension and symmetries of the order parameter.

Conditions : locality, and of course correct classical continuum limit,
a—0

e.q. %[CI)HQ[L — o, =™ 0,P(x). "Goes without saying”, does it ?

Counter-examples: lattice actions without any classical limit.
Let’s probe how far universality really reaches !

Surprise: Quantum continuum limit may still be correct, and such
“absurd” lattice actions even provide practical benefits !



O(N) lattice models:

&= (e ... ey el=1 Ve=na, neZ®.

A

We consider d =1, 2,

and NV = 2 (XY model, relevant for superfluids, superconductors, liquid crystals etc.)

or N = 3 (Heisenberg model, describes ferromagnets, 2d: asympt. freedom ~ QCD).

For N =d+ 1 : topological sectors.



Simplest topological lattice action :

Constraint Action

Angle between any pair of nearest neighbor spins < 0

S Lo Lo 0 €€y > COS O
Sle] = Z S(€x,€y) S(€y, €y) = { J

+00 otherwise
(x,y)

Deformations of a configuration (within allowed set) do not cost any action
= “topological lattice action” (= lattice actions with discrete derivatives)

No classical limit, no perturbative expansion

Continuum limit: 6 — 0O



For models with top. charges, () = Z<x,y,_._> Qx.y.... (q: top. charge density)

() Suppressing Action

7l = A Z @z, | A>0.

(z,y,..

For 2d XY model: no top. sectors, but each plaquette has a vortex
number, vy € {0, £1}, which can be suppressed: S|€] =) - |vol .

We consider constraint actions, () (or vortex) suppressing actions,
and combinations.

All are topological lattice actions:

S|€7] is invariant under (most) small deformations of a configuration.



II. 1d O(2) model : the rotator

b (1)

Slp] = %foﬁ dt o(t)? , periodic b.c.  ©(3) = (0)

Scaling term continuum | constraint action | () suppressing action
Ey—E 3a 3a
Ba—fy 4 4(1+5g+...) 4( —§g+...)
__ (@% 1 1 1a 1 la

Linear lattice artifacts are unusual for scalar models, but:
Correct continuum limit !

Although universality is only assumed in field theory, i.e. d > 2 (?)



I11. The 2d O(3) Model

1. Continuum

Sle] = 2;} /d2:z: 0,€0,€, Q€] :—/dQCIZ €. €(0,€0,€) € Z

Schwarz inequality: S[¢] > i—g Q]|

2. Lattice: Geometric def. of () (Berg/Liischer '81)

(x,y,2)

(x,y,z) triangles, decomposition of square lattice



Ay ..~ (minimal) oriented spherical triangle spanned by €, €,, €.

L attice actions:
Standard S|[€]

1 —_ -
) § €xCxtap
g
T,

: . LS L. 0 €rCortan > COS O
Constraint S[e] = Z S(€xs €xtapn) » S(€zyErtapn) = { 4 oo o‘:hgrwise
@, i
Q Suppressing S[e] = A Z | Az ]
)

(x,y,2



Consider L x L lattices, ratio u = L/&(L) , and
Step-2 Step Scaling Function (SSF) (Lischer/Weisz /Wolff '91)

o(2,u) = 2L/¢(2L)
Continuum values are known,
o(2,u = 1.0595) = 1.26121

(Balog/Niedermayer/Weisz '09)

Must be reproduced in continuum extrapolation of simulation results
with any lattice action in the right universality class.

High precision thanks to cluster algorithm !

10



T | T | T T T T
e Standard action
13l = O(3) D(1/3) action |
’ o O(3) D(-1/4) action
Ao Constraint action
]
= 1.28+ —
QU
N
- ,,/
1.26 —
| | | | | | | | | | |
0 0.02 0.04 0.06 0.08 0.1

alL
Extrapolation: Y(2,u,a/L) = o(2,u) + 2—22<c1 In? 7+ ¢ In” T+ )

Constraint Action: now same form of artifacts, following Symanzik's
theory, and scales better than Standard and Improved Actions
(data from Balog/Niedermayer/Weisz '10)

Top. actions (constraint and ) suppressing [1]) : correct cont. limit!
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Topological susceptibility : y; = % (Q%)

“Scaling term” y; €2 diverges in cont. limit
(small “dislocations” not sufficiently suppressed)

Semi-classical: x; €2 < (£/a)?, p~0.9 (Liischer '82)

“Classically perfect action” eliminates dislocations — log divergences
(Blatter/Burkhalter /Hasenfratz/Niedermayer '96)

How about top. actions ?

E.g. Constraint Action does not suppress dislocations at all ...

We fix L/& =4 and consider (& : 2°9 moment correlation length)

o -

16 x¢ &5 = 16
as a function of L/a =4&/a :
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Divergence in the cont. limit is only logarithmic, both for constraint action
(left, dislocations not suppressed) and () suppressing action (right).

Therefore the 2d O(3) model is sometimes considered “ill

but correlation (q(z)q(y)) at x # y is finite [1].
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Conclusion for the 2d O(3) model

Top. lattice actions: no classical limit, no perturbative expansion,

in part: violation of Schwarz ineq., but correct quantum cont. limit !
On quantum level, universality is powerful!

Symanzik’s theory (cont. theory plus all possible lattice terms) captures
artifacts in field theory (not in d = 1).

“Tree level impaired”, but very good scaling behavior — can be further
improved by combining standard coupling and constraint (Bogli et al. '12)

e €2 diverges just logarithmically, even if dislocations cost zero action.
Still, (q(x)q(y))|ssy is a sensible top. quantity.
(— study of O-vacua, de Forcrand/Pepe/Wiese '12)
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IV. The 2d XY Model (or O(2) Model)

€, = (cos p,,sinp,) € S!

AOy wrap = Po — Patap Mmod 27 € (—m, 7]

Standard action: (Berezinskii '70, '71, Kosterlitz/Thouless '73, BKT)

Sle] =8 Z(l — €2€ptap) =P Z(l — oS AYy ztap)
€T, K

T,

BKT transition : essential phase transition (order oo)

const.
(T —T.)'/?

f(TZTC)oceXp( >, al. = a/B:. >~ 1.1199(1)

(Hasenbusch '05)
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No global top. charge, but each plaquette [ (corners x1...x4) has a
vortex number: (with periodic b.c.: sum = 0)

1

vg = %(Agpxh@ + APgyz5 + APpg oy + A90$4,$1) € {0, £1}, ZUD =0
]

BKT transition: (7 =1/8 : temperature)

e T' > T, : isolated vortices condense, disorder the system, massive

e ' <. : bound vortex—anti-vortex pairs, long-range “order”, massless

T. was estimated from energy cost for isolated vortices (or anti-vortices).

Topological lattice actions:

e Constraint Action : |A@y zrap] < 6 Vo, 1

e Vortex Suppressing Action : S|€] = A _|vo|
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New type of cluster algorithm still applies at A > 0. At fixed A :
dc(A=0) =1.7752(6) , 6c(A =2) =1.8665(8), d.(A=4) =1.9361(8)

t.
606 2 00 o exp (255 )

Again transition of the BKT type, although at A = 0 isolated (anti-)vortices
cost zero energy ! n —

massive phase

.......................
...........

massless phase

0 1 1
0 2 4 R

0 <7m/2 or A — 400 : no vortices
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Further evidence for BKT behavior:

1. Step-2 SSF: Continuum: o(2,u := 2L/ = 3.0038) = 4.3895

Standard action, cont. extra

2(2,u, a/l)

4.6

4.4 g e
sl T

4l
3.8 |
3.6 |
34 |

32 ¢

3

polation: 4.40(2) (Balog/Knechtli/Korzec/Wolff '03)

continuum limit X

standard action —e—
A=0 --—8---

}\=2 RSN :

(A=t oo

0

0.02 0.04 0.06

0.08

(U + log(§/a))

2(27 u, a/L) — 0(27 u) + [ln(€/§)+U]2 T O(ln_4(£/a’))
Top. lattice actions are consistent. Excellent scaling for Constraint Action!

0.1

0.12  0.14

c ~ 2.6 was claimed to be universal, but ¢ < 0 for top. actions
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2. Dimensionless Helicity Modulus T

Twisted boundary conditions; p(«) : probability for twist angle a

_ 0>
T = T 24 In p(a)]a=o
At BKT transition
_ 2
TC _ —
.

(Nelson /Kosterlitz '77)

Simulate with dynamical boundary conditions,

extract Y, from histogram for a.
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0.74 : , , : . .
standard action ——+—
+ Step action B
0.72 constraint action :--*---1 o
2/n
+ 2/n+cy/(InL+cy) —=——
0.7 + i
+
+
0.68 = _
Y, Ffpo O . )
C
0.66 [ ]
0.64 P¥7 . i
“X_x N
PT——— Fmrmm e
- " -* ........ oo
0.62 - Bmr .
0.6 ! L L I L !

1/L

Y.(L = 2048) : 5.6 % off (Hasenbusch '05)
e Step action: Y (L =256) : 4.1 % off (Olsson/Holme '01)
e Constraint action: Y .(L =8) : 2.8 % off, L > 64 : correct!

e Standard action:

Incredibly small finite size effects.

One of the best numerical evidences ever for a BKT transition !
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Vortex—anti-vortex pair (un)binding mechanism is still valid:

0.02
0
0.015 - oo Distance=1| -
= Distance = 2
-0.02 +—¢ Distance= 3|
3

= 0.01 -

Q . -0.04 -
o
0.005 - -0.06 B
-0.08 _
0
17 | | | . | | |

o 17 18 19 2 2.1 2.2

Left: density of “free vortices” (no anti-vortex within distance r, or v.v.)
Right: vorticity correlation function C(r) = (v0,2V0,54r) | |vy_, |=1

(Un)binding as a purely combinatorial effect, without any Boltzmann factor!
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0 = 7 : Pure Vortex Suppressing Action, upper axis in phase diagram:
good fit with (unexpected) ansatz

E(N) =coexp(cr A) = Ae=+400

350
300
250
200
wS
150 |
100 |
50
0 —
0 1
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Step-2 SSF has extrapolation o(2,u = 6)g¢ = 9.47(1)

9.49
9.48 -
047 |
=9 5
E |
=) 9.46
I
W
945
944
lattice data ——e—
continuum extrapolation ‘-
943 4 : : ' : : ' '
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
(U + log(§/a)) ™
BKT value: 0'(2, u = 6)BKT = 11.53 (Balog '12)

NO BKT transition, consistent with vortex picture

(vortex—anti-vortex pair formation drives BKT transition, here absent).
New transition, overlooked in (tremendous) literature on this model.
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Conclusions for the 2d XY Maodel

0-constraint and A = 0 or finite A :
Phase transition at d.(\), consistent with BKT behavior

SSF and xm — 1 [2]:
large L extrapolation compatible with BKT prediction.

Y(5) : gap at 6. [3]. BKT prediction Y. = 2/7 confirmed with
unprecedented precision: correct even without large-L extrapolation!

One of the most compelling numerical evidences for a BKT transition.

Vortex—anti-vortex pair (un)binding mechanism:
still applies, even without any energy requirement for free vortices.

A — 00 :
new transition in this model, not of BKT type, to be explored ...
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Appendix A: Related actions in the 2d XY literature:

0 Apg , < 7/2

* Step Action : S:atajp = { So otherwise

BKT transition at critical Sy
(Kenna/lrving '97, Olsson/Holme '01)

Sp — oo : Constraint action at § = 7/2, no vortices

e Extended XY Model (Domany/Schick /Swendsen '84)
Slel = B |1 = cos?(Apyu/2)]
T,

g = 1 ~ Standard action; increasing g: stronger vortex suppression.

q =~ 8 BKT replaced by 15 order transition, still driven by vortices
(analytic: van Enter/Shlosman '02, numeric: e.g. Ota/Ota '06, Shinha/Roy '10)

Not observed in our phase diagram, but new transition at A\ — oc.
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Appendix B: Second Moment Correlation Length &5

(Connected) correlation function (or 2-point function):

G(x —y) = (€z€y) ZG x) exp(ipx)

{2 is given by the magnetic susceptibility x, = G(0), and by G at the
minimal non-zero momentum, ¢ = G(27/L,0) :

. Xm — ¢ 1/2
2o <4¢ sin%/L))

Can be measured conveniently without fit to exp. decay.

At large L: & ~ & (up to < 0.1 %)  (Caracciolo/Edwards/Pelissetto/Sokal '95)
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Appendix C: Correlation of top. charge density, (¢(0)q(x)), with

1 . . S,
() = = €y €la) - [D,(z) x 0,(o)]
does have a finite cont. limit (at = # 0) ! (Balog/Niedermayer '97)

At x = 0: cancellation of power divergences, log. divergence persists.

Similar in QCD with chiral quarks, ¢ defined with a chiral lattice Dirac
operator. (Giusti/Rossi/Testa '04, Liischer '04)

Point—to—time-slice correlator: (x = (z1,22))

Glaz) = / dz; {g(0)q(x))
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G(z2)&° vs. x5/& for Constraint Action (cluster algorithm)

10

01

G(x,) &

0.01

0.001

0.0001 | | | | | | | | | | | |
0 01 0.2 0.3 0.4 05 0.6 0.7 0.8

XZIIE
Data are continuum extrapolated. Curve predicted by Balog/Niedermayer '97
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