Lattice 2013

Determining the anomalous dimension through the eigenmodes of Dirac operator

Angi Cheng (University of Colorado)

with Anna Hasenfratz, Greg Petropoulos and David Schaich ref: JHEP 1307 (2013) 061

Outline

• Goal/results:

Determining energy-dependent mass anomalous dimension through Dirac eigenmodes

- Method
- Applications (nHYP smeared staggered fermion):
 1) SU(3) 4-flavor: QCD-like, test case
 2) SU(3) 12-flavor: conformal or *χ*SB ? new developments

Goal and Results

Dirac eigenmodes can predict the scale dependent mass anomalous dimension in both chirally broken and IR conformal systems

Goal and Results

Dirac eigenmodes can predict the scale dependent mass anomalous dimension in both chirally broken and conformal systems

Dirac eigenvalue density and mode number

$$S_F[\psi, \bar{\psi}] = \int d^4x \bar{\psi}(x) (\not \!\!\!D + m) \psi(x)$$

 $D\psi_k = \lambda_k \psi_k$

Dirac eigenvalue density: $ho(\lambda)$

Dirac eigenmode number: $\nu(\lambda) = V \int_{-\lambda}^{\lambda} \rho(\omega) d\omega$

5

Dirac eigenvalue density and mode number

In chirally broken system we know :

Banks-Casher relation: $\rho(0) = \pi \langle \bar{\psi}\psi \rangle \neq 0$

In conformal system we expect :

$$\rho(\lambda) \sim \lambda^{\alpha}$$
 $\nu(\lambda) = cV\lambda^{\alpha+1} = c(L\lambda^{(\alpha+1)/4})^4$

RG invariance of $\nu(\lambda)$ implies:

Scaling of mode number for Nf=4

New developments for Nf=12 system

	Published	New
Measurement Method	Direct (eigenvalue)	Stochastic (mode number) L. Giusti, M. Luscher, A. Patella, et al.
Fermion mass	<= 0.0025	0.0
Boundary Con. (spatial)	Periodic	Anti-periodic
Volumes	$L^3 \times 2L, L \le 32$	$L^4, L \le 48$

Test 1: Direct vs. stochastic meas.

Test 2: Finite volume effects

13

Finite volumes effects go away as lambda increases:

 $N_f = 12, \ \beta_F = 4.0$

Test 3: B.C. effects

Test 3: Finite mass effects 32^4 , m=0.0 (chirally symmetric) 3 ensembles: $32^3 \times 64$, m=0.02 (chirally broken) are consistent $32^3 \times 64$, m=0.025 (chirally broken) $N_f = 12$ $\beta_F = 4.0$ $\Delta \lambda = 0.02$ Finite mass breaks chiral symmetry 1.5 Finite mass γ_m effects disappear above $\lambda \approx 0.3$ 0.5 "Backward flow" 32nt32, m = 0.032nt64, m = 0.0232nt64, m = 0.0250.2 0.3 0.1 0.4 0.5 0.6 0.7 0 15

Again: SU(3) 12-flavor results

All finite volume, mass, b.c. effects only affect small lambda transient

- Investigating ranges of couplings & energy scales required
- Extrapolation to IR limit required

Conclusions

- Goal/results: $\gamma_m(\lambda) \longleftarrow \nu(\lambda)$
- Applications:
 1) SU(3) 4-flavor system: QCD-like
 2) SU(3) 12-flavor system: consistent IRFP with γ_m ~ 0.2
- Unique probe to study systems from IR to UV
- Universal and applicable to any lattice model of interest, including both conformal and chirally broken systems.

Thank you!

Funding and computing resources

Scaling of mode number for Nf=16

known IR conformal:

21

$$N_{f} = 16$$

"walking" chirally-broken or strongly-coupled IR conformal ?