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gauge theorySU(3) NF = 2 flavors, two-index symmetric representation

shorthand: sextet NMWT (next to minimal walking technicolor)

why?

- if chiralSB occurs, generates 3 Goldstones - exact match to EW gauge bosons

- unusual representation, possible near conformal behavior for small

- possible dark matter, no Witten anomaly 

- our previous work suggests chiralSB does occur

- new result: light composite scalar    Higgs impostor Ricky Wong Mon 6:30

other work: Sinclair, Kogut; DeGrand, Shamir, Svetitsky
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are hard to detect within the accuracy of the data. The result

is shown in the top plot of Figure 2. When the quadratic term

is added to the fit, the massless intercept c0 = �ψψ�m=0 from

the quadratic fit agrees with the one from the linear fit and the

quadratic fit coefficient in c2 · m2
is zero within fitting error.

For an independent determination, we also studied the sub-

tracted chiral condensate operator defined with the help of the

connected part χconn of the chiral susceptibility χ,

�
1 − mv

d
dmv

�
�ψψ�
����
mv=m

= �ψψ� − m · χcon ,

χ =
d

dm
�ψψ� = χcon + χdisc , χcon =

d
dmv

�ψψ�pq

����
mv=m
. (3)

The derivatives d/dm and d/dmv are taken at fixed gauge

coupling β. The derivative d/dmv is defined in the partially

quenched functional integral of �ψψ�pq with respect to the va-

lence mass mv and the limit mv = m is taken after differentia-

tion. The removal of the derivative term significantly reduces

the dominant linear part of the �ψψ� condensate without chang-

ing the intercept in the m = 0 limit. Once the derivative term is

subtracted, the first non-perturbative IR contribution, quadratic

in m, is better exposed. The two independent determinations

give consistent non-vanishing fit results in the massless chiral

limit as shown in the lower plot of Figure 2.

The independent determinations of the non-vanishing con-

densate in the chiral limit with separate fits c0 = �ψψ�m=0 and

d0 = �ψψ�m=0 are consistent with each other but differ from the

GMOR [85] relation �ψψ� = 2BF2
by a factor of two. As shown

in the next section, the value of 2B is determined in lattice units

from the pion spectrum using the leading M2

π = 2B · m rela-

tion. We find the numerical value 2B = 6.35(21) as shown in

the top plot of Figure 3. F is determined from the pseudoscalar

correlator which satisfies the PCAC relation. We find in lattice

units the numerical value F = 0.0279(4) from the lower plot

of Figure 3 with 2BF2 = 0.0049(2). Both sides of the GMOR

relation are sensitive to cutoff effects in B and F at bare lattice

coupling β = 3.2. Our preliminary fits based on staggered chi-

ral perturbation theory indicate that cutoff effects modifying the

continuum values of B and F are likely sources of the discrep-

ancy [86]. Some increase in the cutoff dependent values of B
and F, which is the observed trend, would bring the two sides

of the GMOR relation in agreement.

4. Spectral tests of the χSB hypotheses

4.1. Strategy and challenges of the spectrum analysis
Spectrum calculations in a gauge theory with massless

fermions require important and difficult lattice extrapolations:

(1) Extrapolation from finite lattice size to infinite volume,

(2) Extrapolation to the massless fermion limit,

(3) Extrapolation in lattice spacing to the continuum.

All three issues will be addressed as we present details of the

spectrum analysis in this section. The strategy of finite size

corrections was explained in Section 2 and it will be applied

here. Extrapolation from finite fermion masses will be used to

test the two contrasting hypotheses, one with χSB and the other

with conformal behavior. As a first step to address the removal

of finite lattice spacing, we will compare the Goldstone and

non-Goldstone pion spectra at two different lattice spacings to

probe the restoration of taste symmetry for staggered fermions

as the lattice spacing is decreased.

4.2. The Goldstone pion and Fπ
The chiral Lagrangian describes the low energy theory of

Goldstone pions and non-Goldstone pions in the staggered lat-

tice fermion formulation. It will be used as an effective tool

probing the χSB hypothesis at finite fermion masses including

extrapolation to the massless chiral limit. Close to the chiral
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Figure 3: Polynomial fits from the analytic mass dependence of the chiral La-

grangian without logarithmic loop corrections are shown for the Goldstone pion

and Fπ. The dashed line in the top plot for the Goldstone pion shows the leading

linear contribution.

limit, the pion spectrum and the pion decay constant Fπ are

organized in powers of the fermion mass m which is an input

parameter in the simulations. Chiral log corrections to the poly-

nomial terms are generated from pion loops [87]. Their analysis

will require an extended dateset with high statistics.

In Section 2 we presented results of infinite-volume extrap-

olations. The effects are largest at m = 0.003 in our dataset

and the infinite-volume limits of Mπ and Fπ were shown for

m = 0.003 for fixed lattice cutoff and bare coupling β = 3.2.

4

tree-level Symanzik improved gauge
stout-smeared staggered

several volumes up to 96× 48
3

mass range down to Mπ ∼ 0.13

finite volume effect < 1%

is the pion a Goldstone boson?

mass-dependence matches 
chiral PT behavior

Yes

small errors, but cannot probe possible chiral logarithms

blue points not fitted - outside chiPT regime
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are hard to detect within the accuracy of the data. The result

is shown in the top plot of Figure 2. When the quadratic term

is added to the fit, the massless intercept c0 = �ψψ�m=0 from

the quadratic fit agrees with the one from the linear fit and the

quadratic fit coefficient in c2 · m2
is zero within fitting error.

For an independent determination, we also studied the sub-

tracted chiral condensate operator defined with the help of the

connected part χconn of the chiral susceptibility χ,

�
1 − mv

d
dmv

�
�ψψ�
����
mv=m

= �ψψ� − m · χcon ,

χ =
d

dm
�ψψ� = χcon + χdisc , χcon =

d
dmv

�ψψ�pq

����
mv=m
. (3)

The derivatives d/dm and d/dmv are taken at fixed gauge

coupling β. The derivative d/dmv is defined in the partially

quenched functional integral of �ψψ�pq with respect to the va-

lence mass mv and the limit mv = m is taken after differentia-

tion. The removal of the derivative term significantly reduces

the dominant linear part of the �ψψ� condensate without chang-

ing the intercept in the m = 0 limit. Once the derivative term is

subtracted, the first non-perturbative IR contribution, quadratic

in m, is better exposed. The two independent determinations

give consistent non-vanishing fit results in the massless chiral

limit as shown in the lower plot of Figure 2.

The independent determinations of the non-vanishing con-

densate in the chiral limit with separate fits c0 = �ψψ�m=0 and

d0 = �ψψ�m=0 are consistent with each other but differ from the

GMOR [85] relation �ψψ� = 2BF2
by a factor of two. As shown

in the next section, the value of 2B is determined in lattice units

from the pion spectrum using the leading M2

π = 2B · m rela-

tion. We find the numerical value 2B = 6.35(21) as shown in

the top plot of Figure 3. F is determined from the pseudoscalar

correlator which satisfies the PCAC relation. We find in lattice

units the numerical value F = 0.0279(4) from the lower plot

of Figure 3 with 2BF2 = 0.0049(2). Both sides of the GMOR

relation are sensitive to cutoff effects in B and F at bare lattice

coupling β = 3.2. Our preliminary fits based on staggered chi-

ral perturbation theory indicate that cutoff effects modifying the

continuum values of B and F are likely sources of the discrep-

ancy [86]. Some increase in the cutoff dependent values of B
and F, which is the observed trend, would bring the two sides

of the GMOR relation in agreement.

4. Spectral tests of the χSB hypotheses

4.1. Strategy and challenges of the spectrum analysis
Spectrum calculations in a gauge theory with massless

fermions require important and difficult lattice extrapolations:

(1) Extrapolation from finite lattice size to infinite volume,

(2) Extrapolation to the massless fermion limit,

(3) Extrapolation in lattice spacing to the continuum.

All three issues will be addressed as we present details of the

spectrum analysis in this section. The strategy of finite size

corrections was explained in Section 2 and it will be applied

here. Extrapolation from finite fermion masses will be used to

test the two contrasting hypotheses, one with χSB and the other

with conformal behavior. As a first step to address the removal

of finite lattice spacing, we will compare the Goldstone and

non-Goldstone pion spectra at two different lattice spacings to

probe the restoration of taste symmetry for staggered fermions

as the lattice spacing is decreased.

4.2. The Goldstone pion and Fπ
The chiral Lagrangian describes the low energy theory of

Goldstone pions and non-Goldstone pions in the staggered lat-

tice fermion formulation. It will be used as an effective tool

probing the χSB hypothesis at finite fermion masses including

extrapolation to the massless chiral limit. Close to the chiral
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Figure 3: Polynomial fits from the analytic mass dependence of the chiral La-

grangian without logarithmic loop corrections are shown for the Goldstone pion

and Fπ. The dashed line in the top plot for the Goldstone pion shows the leading

linear contribution.

limit, the pion spectrum and the pion decay constant Fπ are

organized in powers of the fermion mass m which is an input

parameter in the simulations. Chiral log corrections to the poly-

nomial terms are generated from pion loops [87]. Their analysis

will require an extended dateset with high statistics.

In Section 2 we presented results of infinite-volume extrap-

olations. The effects are largest at m = 0.003 in our dataset

and the infinite-volume limits of Mπ and Fπ were shown for

m = 0.003 for fixed lattice cutoff and bare coupling β = 3.2.
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densate �ψψ� are shown in Figure 1 where �g1(λ, η) describes

finite volume corrections from the exchange of the lightest pion

state with λ = MπL and lattice aspect ratio η = T/L, similarly

to what was introduced in [80]. The fitting procedure approxi-

mates the leading treatment of the pion which wraps around the

finite volume, whether in chiral perturbation theory (χpt), or in

Lüscher’s non-perturbative finite size analysis [81]. This equiv-

alence relaxes the requirement on the fitted parameters cM ,cF ,c1

to agree with 1-loop χPT as long as the pion is the lightest state

dominating the finite volume corrections. It should be noted

that the form of the fitting function�g1(λ, η) does not commit to

the chirally broken phase. At fixed fermion mass m, the leading

exponential term of the function is also the expected behavior

in the conformal phase with mass deformation. The asymptotic

exponential form simply originates from the lightest state wrap-

ping around the volume once emitted from and re-absorbed by

the composite state whose sensitivity to finite volume correc-

tions is being investigated. The analysis is therefore applicable

to both mass deformed phases with different symmetry proper-

ties.

The infinite-volume limits of Mπ, Fπ, and �ψψ� for m = 0.003

at β = 3.2 were determined self-consistently from the fitting

procedure. Similar fits were applied to other composite states.

The value of Mπ in the fit of the top plot in Figure 1 was de-

termined from the highly non-linear fitting function and used

as input in the other two fits. Based on the fits at m = 0.003,

the results are within one percent of the infinite-volume limit at

MπL = 5. In the fermion mass range m ≥ 0.004 the condition

MπL > 5 is reached at L = 32. Although it will require high

precision runs to test, we expect less than one percent residual

finite size effects in the 32
3 × 64 runs for m ≥ 0.004. Based

on these observations, we will interpret the results from the

32
3 × 64 runs for m ≥ 0.004 as infinite-volume behavior in

mass deformed chiral and conformal analysis.

3. The chiral condensate

Our simulations show that the chiral condensate �ψψ� is con-

sistent with χSB and remains non-vanishing in the massless

fermion limit. It has the infinite-volume spectral representation,

�ψψ� = −2m ·
� Λ

0

dλ
ρ(λ)

m2 + λ2
, (1)

which is UV-divergent when the cutoff Λ is taken to infinity.

The divergences are isolated by writing the integral of the spec-

tral representation in twice subtracted form [82],

�ψψ� = −2m ·
� µ

0

dλ
ρ(λ)

m2 + λ2

− 2m5 ·
� Λ

µ

dλ
λ4

ρ(λ)

m2 + λ2
+ c1(a) · m + c3(a) · m3 . (2)

The first integral in Eq. (2) isolates the infrared part and re-

covers the well-known relation �ψψ� = −πρ(0) in the m → 0

limit [83]. The linear fermion mass term c1(a) ·m is a quadrati-

cally divergent UV contribution ≈ a−2 · m with lattice cutoff a.

There is also a very small third-order UV term c3(a)·m3
without

power divergences which is hard to detect for small m and has

not been tested within the accuracy of the simulations.

IR finite contributions to the condensate from the chiral La-

grangian are connected at the low energy scale µ with the first

integral in Eq. (2). In the chiral expansion of the condensate

there is an m-independent constant term which is proportional

to BF2
, a linear term proportional to B2 · m, a quadratic term

∼ B3F−2 ·m2
, and higher order terms, in addition to logarithmic

corrections generated from chiral loops. The expansion in the

fermion mass is expressed in terms of low energy constants of

chiral perturbation theory, like B and F [84].
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Figure 2: The chiral condensate and its reduced form with subtracted derivative

(both have to converge to the same chiral limit) are shown in the top plot with

linear fit to the condensate. The data without derivative subtraction cannot de-

tect higher order fermion mass terms with significant accuracy. The fit to the

reduced form with subtracted derivative is defined in the text and shown in the

magnified lower plot. A linear term is not included in this fit since the sub-

tracted derivative form approximately eliminates it. The value of d0 at m = 0 is

shown to be consistent with the direct determination of c0 from the chiral limit

of �ψψ�. The consistency is very reassuring since the two results are derived

from independent determinations. For m = 0.003 the data from infinite-volume

extrapolation were used in the fit. As we explained earlier, at higher m values

the largest volume 32
3×64 runs were used for the condensate and its derivative

subtraction.

We used two independent methods for the determination of

the chiral condensate in the massless fermion limit. In the first

method fits were made directly to �ψψ� with constant and linear

terms in the fitted function. Quadratic and third order terms

3

direct measurement of chiral 
symmetry breaking via

steep mass dependence due to 
UV divergent contribution

even with small errors, chiral 
extrapolation is challenging

improvement: independent observable

are hard to detect within the accuracy of the data. The result

is shown in the top plot of Figure 2. When the quadratic term

is added to the fit, the massless intercept c0 = �ψψ�m=0 from

the quadratic fit agrees with the one from the linear fit and the

quadratic fit coefficient in c2 · m2
is zero within fitting error.

For an independent determination, we also studied the sub-

tracted chiral condensate operator defined with the help of the

connected part χconn of the chiral susceptibility χ,

�
1 − mv

d
dmv

�
�ψψ�
����
mv=m

= �ψψ� − m · χcon ,

χ =
d

dm
�ψψ� = χcon + χdisc , χcon =

d
dmv

�ψψ�pq

����
mv=m
. (3)

The derivatives d/dm and d/dmv are taken at fixed gauge

coupling β. The derivative d/dmv is defined in the partially

quenched functional integral of �ψψ�pq with respect to the va-

lence mass mv and the limit mv = m is taken after differentia-

tion. The removal of the derivative term significantly reduces

the dominant linear part of the �ψψ� condensate without chang-

ing the intercept in the m = 0 limit. Once the derivative term is

subtracted, the first non-perturbative IR contribution, quadratic

in m, is better exposed. The two independent determinations

give consistent non-vanishing fit results in the massless chiral

limit as shown in the lower plot of Figure 2.

The independent determinations of the non-vanishing con-

densate in the chiral limit with separate fits c0 = �ψψ�m=0 and

d0 = �ψψ�m=0 are consistent with each other but differ from the

GMOR [85] relation �ψψ� = 2BF2
by a factor of two. As shown

in the next section, the value of 2B is determined in lattice units

from the pion spectrum using the leading M2

π = 2B · m rela-

tion. We find the numerical value 2B = 6.35(21) as shown in

the top plot of Figure 3. F is determined from the pseudoscalar

correlator which satisfies the PCAC relation. We find in lattice

units the numerical value F = 0.0279(4) from the lower plot

of Figure 3 with 2BF2 = 0.0049(2). Both sides of the GMOR

relation are sensitive to cutoff effects in B and F at bare lattice

coupling β = 3.2. Our preliminary fits based on staggered chi-

ral perturbation theory indicate that cutoff effects modifying the

continuum values of B and F are likely sources of the discrep-

ancy [86]. Some increase in the cutoff dependent values of B
and F, which is the observed trend, would bring the two sides

of the GMOR relation in agreement.

4. Spectral tests of the χSB hypotheses

4.1. Strategy and challenges of the spectrum analysis
Spectrum calculations in a gauge theory with massless

fermions require important and difficult lattice extrapolations:

(1) Extrapolation from finite lattice size to infinite volume,

(2) Extrapolation to the massless fermion limit,

(3) Extrapolation in lattice spacing to the continuum.

All three issues will be addressed as we present details of the

spectrum analysis in this section. The strategy of finite size

corrections was explained in Section 2 and it will be applied

here. Extrapolation from finite fermion masses will be used to

test the two contrasting hypotheses, one with χSB and the other

with conformal behavior. As a first step to address the removal

of finite lattice spacing, we will compare the Goldstone and

non-Goldstone pion spectra at two different lattice spacings to

probe the restoration of taste symmetry for staggered fermions

as the lattice spacing is decreased.

4.2. The Goldstone pion and Fπ
The chiral Lagrangian describes the low energy theory of

Goldstone pions and non-Goldstone pions in the staggered lat-

tice fermion formulation. It will be used as an effective tool

probing the χSB hypothesis at finite fermion masses including

extrapolation to the massless chiral limit. Close to the chiral
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Figure 3: Polynomial fits from the analytic mass dependence of the chiral La-

grangian without logarithmic loop corrections are shown for the Goldstone pion

and Fπ. The dashed line in the top plot for the Goldstone pion shows the leading

linear contribution.

limit, the pion spectrum and the pion decay constant Fπ are

organized in powers of the fermion mass m which is an input

parameter in the simulations. Chiral log corrections to the poly-

nomial terms are generated from pion loops [87]. Their analysis

will require an extended dateset with high statistics.

In Section 2 we presented results of infinite-volume extrap-

olations. The effects are largest at m = 0.003 in our dataset

and the infinite-volume limits of Mπ and Fπ were shown for

m = 0.003 for fixed lattice cutoff and bare coupling β = 3.2.
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GMOR relation
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Euclidean, continuum Dirac operator eigenvalues iλk

ρ(λ,m) =
1

V

∞∑

k=1

〈δ(λ− λk)〉density

Banks-Casher lim
λ→0

lim
m→0

lim
V→∞

ρ(λ,m) =
Σ

π
Σ = −〈ψ̄ψ〉

relevant for simulations at finite mass and volume?

absence of near-zero modes due to too small volume can occur

calculate lowest eigenvalues numerically directly for various ensembles
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more sophisticated version: eigenvalues of D
†
D +m

2

count number of eigenvalues ≤ M
2 ν(M,m) = V

∫ Λ

−Λ

dλ ρ(λ,m), Λ =
√
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to be under control
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eigenvalues and mode number study new and unfinished

steep mass dependence of condensate reduced

improvement in consistency between GMOR relation and direct 
chiral condensate

chiral extrapolation: non-zero condensate supports chiral SB picture  

coming soon: full implementation of gradient flow (including fermion flow)
gradient flow running coupling
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4.4. The ρ and A1 parity partner states
It is useful and important to investigate the chiral limit of

composite hadron states separated by a gap from the Goldstone

and non-Goldstone pion spectra. The baryon mass gap in the

chiral limit can provide further evidence for χSB but our pre-

liminary results are not shown here. Hadron masses of par-

ity partners also provide important information with split parity

masses in the chiral limit. This is particularly helpful not only to

confirm χSB but to obtain a first estimate on the S parameter for

probing the model against electroweak precision tests [92]. As

an example, we will briefly review our results for the ρ meson

state and its parity partner, the A1 meson. Particularly interest-

ing is the ρ − A1 mass splitting with parity violation. Figure 5
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Figure 5: Linear fit to the ρ meson mass is shown in the top plot of the figure.

The lower plot shows the linear fit to the A1 meson superimposed on the ρ
meson plot. The parity split is quite visible with varying size errors in the fitted

m range.

shows fits to the ρ meson and its A1 parity partner. The top

plot is a linear fit to the ρ meson with a non-vanishing mass at

m = 0, consistent with χSB. The lower plot shows the linear

fit to the A1 meson. Both states extrapolate to non-vanishing

masses in the chiral limit. The split appears to be significant

for all fermion masses but the error is too large to resolve the

chiral limit. More work with higher statistics is needed on this

correlator before conclusive results can be obtained.

5. Spectral tests of the conformal scaling hypothesis

Under the conformal scaling hypothesis, the mass Mπ and the
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Figure 6: The two plots represent separate conformal fits to Mπ (top) and Fπ
(bottom). The separate fits have reasonable χ2

values but the incompatibility of

the fitted γ values disfavors the conformal hypothesis in its leading form.

decay constant Fπ are given at leading order by Mπ = cπ ·m1/1+γ

and Fπ = cF ·m1/1+γ
. The coefficients cπ and cF are channel spe-

cific but the exponent γ is universal in all channels [43–46]. The

leading scaling form sets in for small m values, close to the crit-

ical surface. According to the hypothesis, there is an infrared

conformal fixed point on the critical surface which controls the

conformal scaling properties of small mass deformations. All

masses of the spectrum can be subjected to similar conformal

scaling tests, but we will mostly focus on accurate data in the

Mπ and Fπ channels.

When Mπ and Fπ are fitted separately in the range of the four

lowest fermion masses closest to the critical surface, we get

reasonable χ2
values for the fits, as shown in Figure 6. How-

ever, the incompatibility of the fitted γ values disfavors the hy-

pothesis, inconsistent with mass deformed conformal behavior.

The conflicting simultaneous fits to universal conformal form

with the same γ for the Goldstone pion and the Fπ decay con-

stant are illustrated in Figure 7. Fitting to the pion mass sepa-

rately requires γ = 1.040(73) while the separate Fπ fit is forc-

ing γ = 2.20(15). In the combined fit they compromise with

γ = 1.53(28) and the unacceptable χ2/dof of 44.5. It is impor-

tant to note that the exponent γ for the fit to Mπ only is what

χSB would prefer. The separate conformal exponent γ for Fπ
is large to force to the origin the linear string of data which ex-

trapolate to a finite constant in χSB. This creates conflict with

the universal exponent γ in the conformal analysis.

From the tests we were able to perform, the sextet model is

consistent with χSB and inconsistent with conformal symme-
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Confining force with fundamental and sextet fermions Kieran Holland
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Figure 5: Fits of the string tension for Nf = 2 sextet theory: (left) from V (r) fits including α/r and (right) from linear

V (r) fits without α/r. In the right plot, the fitted conformal exponent 1/(1+ γ) is consistent with zero, hence the curve

is omitted.

mass-dependence of σ1/2
, using both linear and conformal power-like m1/(1+γ)

forms. As before,

we consider both parametrizations of V (r). We see in fact very little mass dependence. With

or without the Coulomb term when extracting σ , the fitted conformal exponents are respectively

1/(1+ γ) = 0.04(4) and 0.00(6), giving unacceptable values of the anomalous dimension γ . (A

negative value for the exponent would be unphysical and simply reflects statistical fluctuations.)

Linear extrapolations give a clear non-zero value for the string tension in the chiral limit. This

suggests that the sextet theory appears to be non-conformal, which is consistent with our analysis

of the mass spectrum.

2.4 Force

In fitting the potential V (r), correlation between data at different r was not taken into account,

given the instability of the covariance matrix without very large statistics. This can be partially

cured by extracting the force F(r) directly from the Wilson loops W (r, t). We construct an effective

force F(r�, t) = V (r+1, t)−V (r, t), which is fitted at sufficiently large time t to a constant. In the

fit, the covariance matrix includes correlation of the data both in r and in t. The naive definition

of the force location is r� = r+ 1/2, which we improve by taking into account the propagator for

the improved action. For example, in our action r = 4 corresponds to r� = 4.45787, at larger r the

deviation from half-integer quickly vanishes. If a given theory is conformal, at large r the force

should have a pure 1/r2
behavior, such that the renormalized coupling αqq(r) = r2F(r)/CF flows

to an infrared fixed point with increasing r. Alternatively, linear behavior in the potential V (r) at

intermediate separation corresponds to a constant force F(r).
In Figure 6 we show the force as extracted from the largest volume at the lightest mass for both

the Nf = 2 sextet and Nf = 12 fundamental theories (we find similar behavior at larger mass). As

the separation r� increases, the force appears to flow to a constant, consistent with the independently

determined value of σ from the potential V (r). We compare with perturbation theory, starting the

RG flow of αqq from its directly measured value at r� = 3.42522. The perturbative prediction of

a quickly decreasing force is not supported by the data, and the renormalized coupling continues

6

PoS 2012, 1211.3548

linear behavior in fermion 
potential at larger separation

string tension insensitive to
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non-zero in chiral limit

further evidence theory
is not conformal
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Figure 7: The first plot shows the simultaneous conformal fit result for the pion

mass, while the second displays the Mpi residuals. The last two plots show the

simultaneous fit result for the pion decay constant and the Fpi residuals.” The

combined fit forces γ = 1.53(28) with an unacceptable χ2/dof of 44.5.

try. It will require further investigations to show that subleading

effects cannot alter this conclusion. We will consider compre-

hensive conformal finite size scaling (FSS) tests which do not

rely on infinite-volume extrapolation in the scaling fits. Confor-

mal FSS was extensively applied to a different much discussed

model with twelve fermion flavors in the fundamental repre-

sentation of the SU(3) color gauge group [25]. These kinds of

tests are at a preliminary stage in the sextet project requiring

new runs and systematic analysis. The FSS analysis of the ex-

isting dataset of this paper, when smaller volumes are included,

disfavors the conformal hypothesis similarly to what we just

presented in the infinite-volume limit. It is difficult to reconcile

χSB and large exponents in the fermion mass dependence with

the low value of γ defined by the chiral condensate using the

Schödinger functional for massless fermions [3].

6. The new sextet Higgs project

If χSB of the sextet model is confirmed in the massless

fermion limit, its potential relevance for the realization of the

composite Higgs mechanism is self-evident. The three Gold-

stone pions of the model have the perfect match for providing

the longitudinal components of the W± and Z bosons. The re-

maining most important issues are: (1) to calculate the mass

of the 0
++

state when the disconnected part of correlator I in

Table 1 of [88] is included; (2) the determination of the non-

perturbative gluon condensate on the lattice to clarify the dila-

ton connection if the Higgs particle turns out to be light; (3) a

more precise determination of the running coupling for which

we will deploy our new method based on the gradient flow of

the gauge field in finite volume [93]. We will outline in some

details the first and second issues.

6.1. The f0 state in the 0
++ channel

Figure 8 shows the fermion mass dependence of the f0 meson

without including the disconnected part of correlator I in Table

1 of [88]. The non-Goldstone scPion and f0 are parity partner

states in this correlator. The quantum numbers of the f0 meson

match that of the 0
++

state in the staggered correlator. Close

to the conformal window the f0 meson is not expected to be

similar to the σ particle of QCD. The full f0 state including the

disconnected diagrams could replace the role of the elementary

Higgs and act as the Higgs impostor if it turns out to be light. It

is very difficult to do the full calculation including the discon-

nected diagram which is the main part of our next generation

sextet Higgs project. First, we will discuss preliminary results

which ignore the disconnected part. The challenges will be out-

lined in the effort to include the disconnected part.

The linear fit from the connected diagram is shown in Fig-

ure 8. It has a non-zero intercept in the chiral limit with a mass

more than five times F so it corresponds to a heavy state and

not a Higgs candidate. Since the f0 state is the parity part-

ner of the non-Goldstone scPion in the full correlator, the two

states would become degenerate in the chiral limit with unbro-

ken symmetry. Close to the conformal window it is reasonable

to expect that the disconnected diagram will dramatically re-

duce the f0 mass and its split from the scPion when the chiral

limit is taken. This will leave the full f0 state a viable Higgs

candidate before new simulations resolve the issue and perhaps

eliminate this attractive scenario.
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Figure 7: The first plot shows the simultaneous conformal fit result for the pion

mass, while the second displays the Mpi residuals. The last two plots show the

simultaneous fit result for the pion decay constant and the Fpi residuals.” The

combined fit forces γ = 1.53(28) with an unacceptable χ2/dof of 44.5.

try. It will require further investigations to show that subleading

effects cannot alter this conclusion. We will consider compre-

hensive conformal finite size scaling (FSS) tests which do not

rely on infinite-volume extrapolation in the scaling fits. Confor-

mal FSS was extensively applied to a different much discussed

model with twelve fermion flavors in the fundamental repre-

sentation of the SU(3) color gauge group [25]. These kinds of

tests are at a preliminary stage in the sextet project requiring

new runs and systematic analysis. The FSS analysis of the ex-

isting dataset of this paper, when smaller volumes are included,

disfavors the conformal hypothesis similarly to what we just

presented in the infinite-volume limit. It is difficult to reconcile

χSB and large exponents in the fermion mass dependence with

the low value of γ defined by the chiral condensate using the

Schödinger functional for massless fermions [3].

6. The new sextet Higgs project

If χSB of the sextet model is confirmed in the massless

fermion limit, its potential relevance for the realization of the

composite Higgs mechanism is self-evident. The three Gold-

stone pions of the model have the perfect match for providing

the longitudinal components of the W± and Z bosons. The re-

maining most important issues are: (1) to calculate the mass

of the 0
++

state when the disconnected part of correlator I in

Table 1 of [88] is included; (2) the determination of the non-

perturbative gluon condensate on the lattice to clarify the dila-

ton connection if the Higgs particle turns out to be light; (3) a

more precise determination of the running coupling for which

we will deploy our new method based on the gradient flow of

the gauge field in finite volume [93]. We will outline in some

details the first and second issues.

6.1. The f0 state in the 0
++ channel

Figure 8 shows the fermion mass dependence of the f0 meson

without including the disconnected part of correlator I in Table

1 of [88]. The non-Goldstone scPion and f0 are parity partner

states in this correlator. The quantum numbers of the f0 meson

match that of the 0
++

state in the staggered correlator. Close

to the conformal window the f0 meson is not expected to be

similar to the σ particle of QCD. The full f0 state including the

disconnected diagrams could replace the role of the elementary

Higgs and act as the Higgs impostor if it turns out to be light. It

is very difficult to do the full calculation including the discon-

nected diagram which is the main part of our next generation

sextet Higgs project. First, we will discuss preliminary results

which ignore the disconnected part. The challenges will be out-

lined in the effort to include the disconnected part.

The linear fit from the connected diagram is shown in Fig-

ure 8. It has a non-zero intercept in the chiral limit with a mass

more than five times F so it corresponds to a heavy state and

not a Higgs candidate. Since the f0 state is the parity part-

ner of the non-Goldstone scPion in the full correlator, the two

states would become degenerate in the chiral limit with unbro-

ken symmetry. Close to the conformal window it is reasonable

to expect that the disconnected diagram will dramatically re-

duce the f0 mass and its split from the scPion when the chiral

limit is taken. This will leave the full f0 state a viable Higgs

candidate before new simulations resolve the issue and perhaps

eliminate this attractive scenario.
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taste breaking
Similar fits were applied to the chiral condensate and compos-
ite states in the spectrum at m = 0.003. Based on the analysis
at m = 0.003, we determined that the infinite-volume limit is
reached at MπL = 5 within one percent accuracy. It is expected
that similar or better accuracy is reached for MπL ≥ 5 at higher
m values in all states of the spectrum. In the fermion mass range
m ≥ 0.004 the condition MπL > 5 is reached at L = 32. Based
on these observations, in fits to the observed pion spectrum and
Fπ we will use infinite-volume extrapolation at m = 0.003 and
treat the 323 × 64 runs for m ≥ 0.004 as if the volume were
infinite.

In Figure 3 we used the local pion correlator with noisy
sources to extract Mπ and Fπ. The correlator is tagged as the
PCAC channel since the PCAC relation, based on axial Ward
identities, holds for this correlator and Fπ can be directly deter-
mined from the residue of the pion pole. The other staggered
meson states and correlators we use are defined in [88]. For
example, what we call the non-Goldstone scPion and the f0
meson are identified in correlator I of Table 1 in [88]. Simi-
larly, the non-Goldstone i5Pion is from correlator VII, the non-
Goldstone ijPion is from correlator VIII, and the rho and A1
mesons are from correlator III of Table 1 in [88]. We measure
the Goldstone pion in two different ways, with one of them de-
fined above and the other is correlator II of Table 1 in [88].
For baryon states in the sextet fermion representation, not pre-
sented here, we use our own construction of correlators which
are different from the baryon correlators of [88].

Based on the analytic fermion mass dependence of the chi-
ral Lagrangian, and using the lowest four fermion masses, good
polynomial fits were obtained without logarithmic loop correc-
tions as shown in Figure 3 for Mπ and Fπ. Although we could fit
Mπ and Fπ with the continuum chiral logarithms included, the
two sets of F and B values from separate fits to Mπ and Fπ are
not quite self-consistent. Rooted and partially quenched stag-
gered perturbation theory is a useful procedure at finite lattice
spacing for simultaneous fits of Mπ and Fπ with a consistent
pair of F and B values [89, 90]. The explicit cutoff dependent
corrections to the F and B parameters would require further
testing at weaker gauge couplings and a set of valence fermion
masses.

We made the first step in this direction by adding a new run
set to our database at β = 3.25. In Figure 4 we show taste-
breaking effects in two pion spectra for comparison. We find
significant reduction in taste breaking at smaller lattice spac-
ing at the weaker coupling. Our staggered perturbation theory
analysis will be presented in a longer follow-up report which
will also include other results from the new runs at the weaker
coupling β = 3.25 [86].

4.3. Taste breaking in the non-Goldstone pion spectrum
The non-Goldstone pion spectra, quite different from the one

found in QCD, are shown at β = 3.2 in the top plot of Fig-
ure 4 using standard notation, introduced earlier. The non-
Goldstone i5Pion is split from the Goldstone pion and remains
exactly degenerate with the non-Goldstone scPion, a similar
feature in QCD. The new feature is the mass dependence of
the split between the Goldstone pion and the non-Goldstone
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Figure 4: The top plot in the figure is the spectrum at β = 3.2. It shows the
polynomial fit of the Goldstone pion (magenta points). The red points are the
non-Goldstone scPion data covering the green i5Pion data with complete de-
generacy. The slightly split ijPion is shown with cyan color. The lower plot
in the figure is the spectrum at β = 3.25. In identical notation it displays the
improvement in taste splitting with a considerably less taste-broken spectrum
when plotted on the same scale.

i5Pion with non-parallel slopes of the fitting functions. The
non-Goldstone ijPion is further split from the i5Pion with a
small mass-independent offset. Although taste breaking effects
appear substantial on the scale of the plot, they are comparable
with those from the HISQ action when the lattice spacings are
matched [91]. The trends of the splits, particularly the fan-out
structure and the lack of parallel equi-spaced splits with a con-
stant slope determined by B is characteristic of gauge models
as they get close to the conformal window. A very small resid-
ual mass at m = 0 is consistent with fits for the non-Goldstone
pion states and decreases as we lower the lattice spacing with
the weaker coupling at β = 3.25. This is shown in the lower
plot of Figure 4 which exhibits a similar structure for the same
pion states as the top figure but on a significantly more col-
lapsed scale. Taste breaking is reduced considerably. It will be
interesting to conduct a full analysis of all data on the finer lat-
tice scale, closer to the continuum limit, and compare with the
results presented here on the coarser lattice scale [86].
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Similar fits were applied to the chiral condensate and compos-
ite states in the spectrum at m = 0.003. Based on the analysis
at m = 0.003, we determined that the infinite-volume limit is
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m values in all states of the spectrum. In the fermion mass range
m ≥ 0.004 the condition MπL > 5 is reached at L = 32. Based
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meson are identified in correlator I of Table 1 in [88]. Simi-
larly, the non-Goldstone i5Pion is from correlator VII, the non-
Goldstone ijPion is from correlator VIII, and the rho and A1
mesons are from correlator III of Table 1 in [88]. We measure
the Goldstone pion in two different ways, with one of them de-
fined above and the other is correlator II of Table 1 in [88].
For baryon states in the sextet fermion representation, not pre-
sented here, we use our own construction of correlators which
are different from the baryon correlators of [88].
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ral Lagrangian, and using the lowest four fermion masses, good
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Mπ and Fπ with the continuum chiral logarithms included, the
two sets of F and B values from separate fits to Mπ and Fπ are
not quite self-consistent. Rooted and partially quenched stag-
gered perturbation theory is a useful procedure at finite lattice
spacing for simultaneous fits of Mπ and Fπ with a consistent
pair of F and B values [89, 90]. The explicit cutoff dependent
corrections to the F and B parameters would require further
testing at weaker gauge couplings and a set of valence fermion
masses.

We made the first step in this direction by adding a new run
set to our database at β = 3.25. In Figure 4 we show taste-
breaking effects in two pion spectra for comparison. We find
significant reduction in taste breaking at smaller lattice spac-
ing at the weaker coupling. Our staggered perturbation theory
analysis will be presented in a longer follow-up report which
will also include other results from the new runs at the weaker
coupling β = 3.25 [86].

4.3. Taste breaking in the non-Goldstone pion spectrum
The non-Goldstone pion spectra, quite different from the one

found in QCD, are shown at β = 3.2 in the top plot of Fig-
ure 4 using standard notation, introduced earlier. The non-
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exactly degenerate with the non-Goldstone scPion, a similar
feature in QCD. The new feature is the mass dependence of
the split between the Goldstone pion and the non-Goldstone
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Figure 4: The top plot in the figure is the spectrum at β = 3.2. It shows the
polynomial fit of the Goldstone pion (magenta points). The red points are the
non-Goldstone scPion data covering the green i5Pion data with complete de-
generacy. The slightly split ijPion is shown with cyan color. The lower plot
in the figure is the spectrum at β = 3.25. In identical notation it displays the
improvement in taste splitting with a considerably less taste-broken spectrum
when plotted on the same scale.

i5Pion with non-parallel slopes of the fitting functions. The
non-Goldstone ijPion is further split from the i5Pion with a
small mass-independent offset. Although taste breaking effects
appear substantial on the scale of the plot, they are comparable
with those from the HISQ action when the lattice spacings are
matched [91]. The trends of the splits, particularly the fan-out
structure and the lack of parallel equi-spaced splits with a con-
stant slope determined by B is characteristic of gauge models
as they get close to the conformal window. A very small resid-
ual mass at m = 0 is consistent with fits for the non-Goldstone
pion states and decreases as we lower the lattice spacing with
the weaker coupling at β = 3.25. This is shown in the lower
plot of Figure 4 which exhibits a similar structure for the same
pion states as the top figure but on a significantly more col-
lapsed scale. Taste breaking is reduced considerably. It will be
interesting to conduct a full analysis of all data on the finer lat-
tice scale, closer to the continuum limit, and compare with the
results presented here on the coarser lattice scale [86].
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