The chiral condensate from the Dirac spectrum in BSM gauge theories

Kieran Holland AEC Bern & University of the Pacific

work with Julius Kuti, Zoltan Fodor, Daniel Nogradi, Chik Him Wong

Lattice 2013 Mainz July 31 2013

MAINZ, GERMANY

UNIVERSITÄT BERN

The chiral condensate from the Dirac spectrum in one BSM gauge theory

Kieran Holland AEC Bern & University of the Pacific

work with Julius Kuti, Zoltan Fodor, Daniel Nogradi, Chik Him Wong

Lattice 2013 Mainz July 31 2013

UNIVERSITÄT BERN

which theory and why

- SU(3) gauge theory $N_F = 2$ flavors, two-index symmetric representation shorthand: sextet why?
 - if chiralSB occurs, generates 3 Goldstones exact match to EW gauge bosons
 - unusual representation, possible near conformal behavior for small N_F
 - possible dark matter, no Witten anomaly
 - our previous work suggests chiralSB does occur
 - new result: light composite scalar Higgs impostor

other work: Sinclair, Kogut; DeGrand, Shamir, Svetitsky

SU(3)-MWT NMWT (next to minimal walking technicolor)

1209.0391

Ricky Wong Mon 6:30

Goldstone bosons

0.06 $c = 0.0270 \pm 0.0004$

- tree-level Symanzik improved gauge stout-smeared staggered several volumes up to 96×48^3 mass range down to $M_{\pi} \sim 0.13$ finite volume effect < 1%
- is the pion a Goldstone boson? Yes

mass-dependence matches chiral PT behavior

conformal hypothesis: quantities vanish as $m^{1/1+\gamma}$ Fails to describe data

this context: decay constant sets Electroweak scale chiral limit F = 246 GeV $L^3 \times 2L$ lattice volumes p-regime: want $F_{\pi}L > 1$ feasible for $N_F = 2$

non-zero in chiral extrapolation (again no chiral logarithms included)

light composite scalar - Higgs impostor

the statement that strongly-interacting theories are Higgs-less looks wrong crucial issue in post-Higgs discovery era

- New Ricky Wong Mon 6:30
- flavor singlet scalar measured on same ensembles
- challenge: disconnected diagrams
- composite scalar appears light
- possible connection to nearby conformal window
- dilaton interpretation?

chiral condensate

0.025

$$\beta = 3.20$$

 $\langle \bar{\psi}\psi \rangle = c_0 + c_1 \cdot m$
 $\beta = 0.01037 \pm 0.00030$

direct measurement of chiral symmetry breaking via $\langle \text{Tr } D^{-1}(m) \rangle$

steep mass dependence due to UV divergent contribution

even with small errors, chiral extrapolation is challenging

improvement: independent observable $\left[1 - m_{v} \frac{d}{dm_{v}}\right] \langle \overline{\psi}\psi \rangle \Big|_{m_{v}=m} = \langle \overline{\psi}\psi \rangle - m \cdot \chi_{con}$

removes dominant linear term

both observables non-zero in chiral limit

GMOR

value of condensate in chiral limit smaller than from extrapolations of directly measured condensate, even with subtraction is staggered chiral PT required to achieve consistency?

GMOR relation

 $\langle \bar{\psi}\psi \rangle = 2BF^2$ $M_\pi^2 = 2B \cdot m$

rearrange

$$\langle \bar{\psi}\psi\rangle = M_{\pi}^2 F_{\pi}^2/m$$

magenta combine previous fits of M_{π}^2, F_{π}

red separate fit of $M_{\pi}^2 F_{\pi}^2/m$ data quadratic ; larger data set

both methods consistent

eigenvalues

Dirac operator eigenvalues Euclidean, continuum

density
$$\rho(\lambda, m) = \frac{1}{V} \sum_{k=1}^{\infty} \langle \delta(\lambda - \lambda_k) \rangle$$

 $\lim_{\lambda \to 0} \lim_{m \to 0} \lim_{V \to \infty} \rho(\lambda, m) = \frac{\Sigma}{\pi}$ Banks-Casher

relevant for simulations at finite mass and volume? absence of near-zero modes due to too small volume can occur

calculate lowest eigenvalues numerically directly for various ensembles

$i\lambda_k$

$$\Sigma = -\langle \bar{\psi}\psi \rangle$$

eigenvalue density

calculate lowest eigenvalues over range mass, volume

show here largest volume and lightest mass

near-zero modes *do* condense

numerical value agrees well with GMOR determination

Banks-Casher in simplest form appears to work

3.5

mode number

more sophisticated version: count number of eigenvalues $\leq M^2$ $\nu(M)$ mode number $\nu(M,m)$ is renormalization-group invariant $\Sigma_{\rm eff} = \frac{\pi}{2} \frac{\nu(M,m)}{\Lambda V}$ leading order chiPT 1-loop chiPT correction is zero in chiral limit For $N_F = 2$ for any value of scale Λ $N_F = 2$ QCD simulations

(G&L also present stochastic method to measure mode number)

eigenvalues of $D^{\dagger}D + m^2$ Giusti & Luscher '08

$$I(m) = V \int_{-\Lambda}^{\Lambda} d\lambda \ \rho(\lambda, m), \quad \Lambda = \sqrt{M^2 - m^2}$$

Smilga & Stern '93

mild quark mass dependence of mode number chiral extrapolation linear

mode number

 $\times 10^{-3}$

choose scale Λ which overlaps many mass, volume ensembles define $\Sigma_{\rm eff} = \frac{\pi}{4V} \frac{d\nu(M,m)}{d\Lambda}$ corresponds to $\Lambda = 0.003$ red

volume dependence

sensitivity to volume appears to be under control

treat data on largest volume at each mass as effectively infinite volume

chiral extrapolation

fit data at largest volumes only

linear dependence on mass describes the data well

extrapolated value in reasonable agreement with GMOR

chiral PT comparison

$$\pi |\Lambda| - N_F^2 m \log \frac{\Lambda^2 + m^2}{\mu^2} - 4m \log \frac{|\Lambda|}{\mu} \right]$$

Osborn, Toublan & Verbaarschot '98

red linear extrapolation

chiral PT expansion around zero mass appears to agree with linear extrapolation from non-zero mass

eigenvalues and mode number study new and unfinished

steep mass dependence of condensate reduced

chiral extrapolation: non-zero condensate — supports chiral SB picture

improvement in consistency between GMOR relation and direct chiral condensate

coming soon: full implementation of gradient flow (including fermion flow) gradient flow running coupling

back-up slides

scale: F = 0.0279(4)

convert via F = 246 GeV

vector ~ 1.7 TeV axial vector ~ 2.3 TeV

static fermion potential

PoS 2012, 1211.3548

linear behavior in fermion potential at larger separation

string tension insensitive to fermion mass

non-zero in chiral limit

further evidence theory is not conformal

eigenvalue density + anomalous dimension

mode number of eigenvalues of massless Dirac operator

$$\nu(\lambda) = V \int_{-\lambda}^{\lambda} d\lambda' \ \rho(\lambda')$$

if theory is conformal

 $\nu(\lambda) \propto \lambda^{1+\alpha}, \ 1+\alpha = 4/(1+\gamma)$

measure via derivative

taste breaking

 β =3.25 Goldstone and non–Goldstone pion spectra

$$M^{2} = c_{0} + c_{1} m \qquad \text{linear fit of non-Goldstone pions}$$

$$M^{2} = c_{1} m + c_{2} m^{2} \quad \text{quadratic fit of Goldstone pion}$$
scPion fit:
$$c_{0} = 0.00304 \pm 0.00079$$

$$c_{1} = 6.47 \pm 0.12$$

$$\chi^{2}/\text{dof} = 0.29$$

similar in magnitude to lattice QCD simulations with staggered fermions e.g. HPQCD