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Introduction

Derive the fermionic contributions to O(κ4) in our 3d
effective theory approach

Instead of a graphical expansion, we employ only
manipulations on block matrices

Include gauge corrections

Resum classes of terms in order to improve convergence
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Definition of the effective action

Partition function with Wilson fermions after Grassmann
integration

Z =

∫
[dUµ] det[QW ] exp[Sg ]

Integrate out spatial link variables

eSeff ≡
∫

[dUk ] det[QW ] exp[Sg ]

Effective action depends only on Polyakov loops

Wi =
Nτ∏
τ=1

U0(~xi , τ)

→ dimensionally reduced theory expanded in β and κ
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Pure gauge theory

Expand Wilson action in characters

Leading order corresponds to a chain of Nτ plaquettes

eS
g
eff = uNτ

∑
<ij>

TrWi TrWj

For small T (= large Nτ ) this is exponentially small, since
u < 1

Corrections increase the effective coupling, but it remains
vanishingly small

Next-to-nearest neighbour interactions are even stronger
suppressed

For now, neglect gauge corrections = Strong coupling limit
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Quark determinant

Well-known analytical tool: Hopping parameter expansion

QW = 1− κ
∑
±ν

(1 + γν)Uν(x)

= 1− T+ − T− − S+ − S− = 1− T − S

At finite µ temporal hops are modified

κ → κeaµ ≡ y

2
; κe−aµ ≡ ȳ

2

Polyakov loops thus have a fugacity factor

c ≡ yNτ = (2κeaµ)Nτ = (2κ)Nτ e
µ
T = exp

[
µ−mstat

T

]
Expansion strategy: Retain all powers of the fugacity c and
expand in κ (i.e. those coming without additional µ factor)
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Static quark determinant

With QW = 1− T − S expand around S = 0, i.e. the static
limit (and use that (1 + γ0)(1− γ0) = 0)

det[Qstat] = det
[
1− T+

][
1− T−

]
=

∏
i

det
[
1 + cWi

]2Nf
[
1 + c̄W †

i

]2Nf

Partition function after temporal link integration (c̄ = 0)

Z =
[
1 + 4cNc + c2Nc

]N3
s

Baryon number density

a3n =
1

NτN3
s

∂

∂µ
lnZ =

4Ncc
Nc + 2Ncc

2Nc

1 + 4cNc + c2Nc
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Static quark determinant

The zero T number density in this approximation reads

lim
T→0

a3n =

{
0, µ < mstat

2Nc , µ > mstat

With a truncation of det[Qstat] in c , like

det[Qstat] ≈ exp

[
2c
∑
i

TrWi

]
,

we do not get saturation on the lattice, i.e. violate Pauli’s
principle

Lesson: Need to sum up all windings in each term
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Leading correction

Introduce some definitions and perform some algebra

det[Q] = det[1− T − S ] = det[1− T ][1− (1− T )−1S ]

= det[Qstat][Qkin]

Split S in positive and negative directions

det[Qkin] = det[1− (1− T )−1(S+ + S−)] = det[1− P −M]

= exp [Tr ln (1− P −M)]

Trace in coordinate space (=closed loops), i.e. only terms
with an equal number of P and M survive

To O(κ2)

det[Qkin] = det[1− PM][1 +O(κ4)]

Higher corrections can be systematically included in this way
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Static propagator

Essential ingredient for computing corrections:

D = (1− T )−1 = (1− T+)−1 + (1− T−)−1 − 1

Only temporal hops are involved: closed form expression
available (but it is a quite lengthy expression). Splitting it in
spin space:

Dt1,t2 = At1,t2 + γ0Bt1,t2

For the leading correction we only need the part of Bt1,t2

diagonal in time

Bt1,t1 = −1

2

cW

1 + cW
+

1

2

c̄W †

1 + c̄W †
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Static propagator

A = δτ1τ2

(
1− 1

2

cW

1 + cW
− 1

2

c̄W †

1 + c̄W †

)
+Θ(τ2 − τ1)

1

2

(
y τ2−τ1W (τ1, τ2)

1 + cW
− ȳNτ+τ1−τ2W †(τ1, τ2)

1 + c̄W †

)
+Θ(τ1 − τ2)

1

2

(
−yNτ+τ2−τ1W (τ1, τ2)

1 + cW
+

ȳ τ1−τ2W †(τ1, τ2)

1 + c̄W †

)
B = δτ1τ2

1

2

(
− cW

1 + cW
+

c̄W †

1 + c̄W †

)
+Θ(τ2 − τ1)

1

2

(
y τ2−τ1W (τ1, τ2)

1 + cW
+

ȳNτ+τ1−τ2W †(τ1, τ2)

1 + c̄W †

)
+Θ(τ1 − τ2)

1

2

(
−yNτ+τ2−τ1W (τ1, τ2)

1 + cW
− ȳ τ1−τ2W †(τ1, τ2)

1 + c̄W †

)
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Static propagator

Essential ingredient for computing corrections:

D = (1− T )−1 = (1− T+)−1 + (1− T−)−1 − 1

Only temporal hops are involved: closed form expression
available (but it is a quite lengthy expression). Splitting it in
spin space:

Dt1,t2 = At1,t2 + γ0Bt1,t2

For the leading correction we only need the part of Bt1,t2

diagonal in time

Bt1,t1 = −1

2

cW

1 + cW
+

1

2

c̄W †

1 + c̄W †
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Result for leading correction

Now the spatial link integration is nontrivial∫
[dUk ] det[1− PM] =

∫
[dUk ][1− TrPM +O(κ4)]

For every spatial link there are now exactly one U and one U†

and with ∫
dU UijU

†
kl =

1

Nc
δilδjk

we have (omitting c̄ contributions)∫
[dUk ][1− TrPM] =

∏
<ij>

[
1− κ2Nτ

Nc
Tr

cWi

1 + cWi
Tr

cWj

1 + cWj

]
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Higher order corrections

Nearest-neighbour interaction also contains higher orders

det[1− PM] = exp

[
−Tr

∑
n

1

n
(PM)n

]

Full kinetic determinant contains couplings between all points

det[Qkin] = det[1− PM − P2M2 − . . .]
= det[1− PM][1− P2M2][1 +O(κ6)]

Note that P =
∑3

i=1 Pi , i.e. P2 mixes different directions
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Gauge corrections

Leaving the strong coupling limit we have to compute

∫
[dUk ] det[Qkin]

∏
p

1 +
∑
r 6=0

drar (β)χr (Up)


Now: double series expansion in β and κ

No conceptual difficulties, only a larger number of terms to be
computed

So far: results up to and including O(κnβm) with n + m = 4
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Resummations

Why resummations:

Include higher order graphs at minimal cost
Does not compromise correctness of originial series
But: At some point, imperative to include them

Leading κ correction∫
[dUk ] det[1− PM] =

∏
<ij>

[
1− κ2Nτ

Nc
Tr

cWi

1 + cWi
Tr

cWj

1 + cWj

]
Small T region: coefficient diverges for fixed κ
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Resummations

These terms exponentiate

After resumming these terms∫
[dUk ] det[1− PM] =

∏
<ij>

exp

[
−κ

2Nτ
Nc

Tr
cWi

1 + cWi
Tr

cWj

1 + cWj

]
Similar results hold also for other terms, e.g. the single
Polyakov line coupling receives renormalization
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Conclusions

Hopping expansion straightforward, but correct physics
requires some attention (Pauli principle)

Resummations necessary to improve convergence (or even to
get meaningful results)

A few more orders are still in reach (Resummations;
Nonperturbative determination of the effective couplings;. . . )

Probe thermal lattice QCD with (heavy) quarks at small
temperatures
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