The critical endpoint of the finite temperature phase transition for three flavor QCD with clover type fermions

Yoshifumi Nakamura

RIKEN Advanced Institute for Computational Science

in collaboration with

X.-Y. Jin, Y. Kuramashi, S. Takeda & A. Ukawa

Lattice 2013, 1 Aug. 2013, Mainz

Critical endpoint(line) of $N_f = 3$ QCD at $\mu = 0$

- staggered type: (no continuum limit yet) [de Forcrand, Philipsen '07, Karsch, et. al. '03, Endrődi, et. al. '07]
 - m_{π}^{E} decreases with decreasing lattice spacing
- Wilson type: (no continuum limit yet)
 - heavy m_q region: boundary determined, [Saito, et. al. '11]
 - light m_q region: 1st order at rather heavy m_q (standard Wilson glue + Wilson fermion), [lwasaki, et. al. '96]

Motivation

- Critical endpoint obtained with staggered and Wilson type fermios is inconsistent
- Results in the continuum limit is necessary and N_f = 3 study is a stepping stone
 - the order of phase transition around the physical point
 - curvature of critical surface at $\mu = 0$

We determine the critical endpoint on SU(3) flavor symmetric line with clover type fermions

Simulations

- action: Iwasaki gluon + N_f = 3 clover (non perturbative c_{SW} , degenerate)
- temporal lattice size $L_t = 4, 6, 8$ for continuum extrapolation
- 3 spatial lattice sizes and a couple of β for each L_t to determine the critical endpoint by using intersection points of the Binder cumulants (kurtosis)

• at
$$L_t = 4$$
, $L_s = 6, 8, 10$, $\beta = 1.60 - 1.73$

• at $L_t = 6$, $L_s = 10, 12, 16$, $\beta = 1.73 - 1.77$

• at
$$L_t = 8$$
, $L_s = 12, 16, 20$, $\beta = 1.73 - 1.78$

• statistics: O(10,000) - O(100,000) traj.

• machines:

- K computer and Xeon cluster at AICS
- FX10 at Uni. Tokyo
- FX10 at Kyushu Uni.

plaquette at $\beta = 1.65$, $L_t = 4$

plaquette susceptibility at $\beta = 1.65$, $L_t = 4$

quadratic fit

plaquette skewness at $\beta = 1.65$, $L_t = 4$

plaquette kurtosis (= B_4 – 3) at β = 1.65, L_t = 4

quadratic fit

 P, s_g, L

Critical endpoint at $L_t = 4$

- *K*(κ^t) is kurtosis value at transition point κ^t which is determined from the peak position of susceptibility
- fit(FSS inspired ansatz) : $K^E + a_0 L_s^{a_1}(\beta \beta^E) + a_2 L_s^{2a_1}(\beta \beta^E)^2$
- we have tried other fitting ansatz, linear, quadratic....

Intersection point

3D Ising

O = M + 0.5E

• B_4 intersection point for non-order parameter ($O = M + \alpha E$) is shifted due to finite volume effects

QCD with finite quark masses

- no order parameter
- larger lattice size, multiple observables analysis are necessary
 - heavy m_q region : Polyakov loop
 - light m_q region :chiral condensate

physical scale at $L_t = 4$ critical endpoint

- we measure hadron masses at transition points
- linear interpolation/extrapolation gives physical scale at the endpoint

$$m_{PS}^{E}/m_{V} = 0.7326(36)$$
 at $L_{t} = 4$

Yoshifumi Nakamura (AICS)

physical scale at $L_t = 6$ critical endpoint

 $m_{PS}^E/m_V = 0.6732(66)$ at $L_t = 6$

physical scale at $L_t = 8$ critical endpoint

 $m_{PS}^E/m_V = 0.624(27)$ at $L_t = 8$

continuum extrapolation for m_{ps}^{E}/m_{V}

15/18

Bulk or NF

Plaq - a

Smeared clover

- action: Iwasaki gluon + $N_f = 3$ smeared clover
 - stout link smearing both hopping and clover term
 - smearing parameter $\alpha = 0.1$, n = 1
 - non perturbative c_{SW}
- temporal lattice size L_t = 4, 6 and 2 spatial lattice sizes and a few β

CEP of finite temperature phase transition

Summary

- We have investigated the critical endpoint of QCD at $\mu = 0$ with clover type fermions
- We have determined the critical endpoint by using the intersection points of the Binder cumulants at $L_t = 4, 6, 8$ and extrapolated to the continuum limit
- We have found the critical endpoint at 1.66(5) × $(m_{uds}^{phy}, m_{uds}^{phy})$ where $m_{uds}^{phy} \equiv (m_u^{phy} + m_d^{phy} + m_s^{phy})/3$
 - plan
 - smeared clover action to investigate discretization error (ongoing)
 - μ > 0 for curvature of critical surface at μ = 0 (ongoing, [Takeda, Wed])

•
$$m_l \neq m_s$$

sketch for endpoint

