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Motivation for SC-LQCD

Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?
Look at Lattice QCD in a regime where the sign problem can be made mild:

Strong Coupling Limit: β = 2Nc
g2 → 0

allows to integrate out the gauge fields
completely, as link integration factorizes
⇒ no fermion determinant
drawback: strong coupling limit is converse to
asymptotic freedom, lattice is maximally coarse
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Strong coupling LQCD shares important features with QCD:
exhibits “confinement”, only color singlet degrees of
freedom survive:

mesons (represented by monomers and dimers)
baryons (represented by oriented self-avoiding loops)

and spontaneous chiral symmetry breaking/restoration: (restored at Tc)
⇒ SC-LQCD is a great laboratory to study the full (µ,T ) phase diagram

SC-LQCD is a 1-parameter deformation of QCD in β
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Motivation for SC-LQCD

Chiral transition and nuclear transitionChiral transition and nuclear transitionChiral transition and nuclear transitionChiral transition and nuclear transitionChiral transition and nuclear transition

This talk: focus on chiral transition and nuclear transition in the chiral limit

Chiral symmetry in SC-LQCD with staggered fermions for Nf = 1:

U(1)V × U(1)55 : ψ(x) 7→ e iε(x)θA+iθVψ(x), ε(x) = (−1)x1+x2+x3+x4

U(1)V baryon number conserved
U(1)55 chiral symmetry spontaneously
broken at low temperatures/densities
expected to be O(2) 2nd order (µ = 0)
note: no chiral anomaly at β = 0

Nuclear Transition (T=0):
baryon crystal forms
chiral symmetry restored
expected to be 1st order

Strong coupling phase diagram via
Mean field: Nishida, PRD 69 (2004)
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Motivation for SC-LQCD

Long History of Staggered SC-LQCDLong History of Staggered SC-LQCDLong History of Staggered SC-LQCDLong History of Staggered SC-LQCDLong History of Staggered SC-LQCD

Mean field (1/d expansion):
1983: development of the technique [Kluberg-Stern, Morel, Petersson]
1985: first finite density analysis [Damgaard, Hochberg & Kawamoto]
1992: Tc (µ = 0) = 5/3, µc (T = 0) = 0.66 [Bilic et al.]
1995: entropy per baryon [Bilic & Cleymans]
2004: full phase diagram and location of (tri)crital point [Nishida]
2009: include O(β) corrections [Ohnishi et al.]

Monte Carlo:
1984: formulation as a dimer system [Rossi & Wolff]
1989: first finite density results with MDP algorithm, aTc (µ = 0) = 1.4, aµc (T = 0) = 0.63

[Karsch & Mütter]
2003: first Worm algorithm applied to U(3): fast, easy to do chiral limit

[Adams & Chandrasehkaran]
2010: full phase diagram and nuclear potential for SU(3) [de Forcrand & Fromm]
2011: continuous Euclidean time methods [de Forcrand & U.]
2011: include O(β) corrections for U(3) [Langelage, de Forcrand, Fromm, Miura, Philipsen, U.]
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Phase Diagram of SC-LQCD, β = 0

Strong Coupling Partition FunctionStrong Coupling Partition FunctionStrong Coupling Partition FunctionStrong Coupling Partition FunctionStrong Coupling Partition Function

After SU(Nc) gauge link integration only hadronic d.o.f. survive:

Mx = χ̄χ(x), Bx =
1

Nc!
εi1...iNcχi1 . . . χiNc

Exact rewriting after Grassmann integration: Mapping to a MDP representation:

Z(mq, µ, γ) =
∑
{k,n,`}

∏
b=(x,µ)

(Nc − kb)!

Nc!kb!
γ2kbδµ0

︸ ︷︷ ︸
meson hoppings Mx My

∏
x

Nc!

nx !
(2amq)nx

︸ ︷︷ ︸
chiral condensate Mx

∏
`

w(`, µ)︸ ︷︷ ︸
baryon hoppings B̄x By

kb ∈ {0, . . .Nc}, nx ∈ {0, . . .Nc}, `b ∈ {0,±1}

Grassmann constraint:

nx +
∑

µ̂=±0̂,...±d̂

(
kµ̂(x) +

Nc

2
|`µ̂(x)|

)
= Nc

weight w(`, µ) and sign σ(`) ∈ {−1,+1} for
oriented baryonic loop ` depends on loop geometry t

finite quark massWolfgang Unger, University of Frankfurt ()The phase diagram of SC-LQCD Mainz, 1.08.2013 5 / 18
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Phase Diagram of SC-LQCD, β = 0

SC-LQCD Phase DiagramSC-LQCD Phase DiagramSC-LQCD Phase DiagramSC-LQCD Phase DiagramSC-LQCD Phase Diagram

Comparison of phase boundaries for Nτ = 2, 4 and Nτ →∞ (continuous time),
studied with Worm algorithm [hep-lat/1111.1434]

identifications:

aT = γ2

Nτ

aµ = γ2aτµ
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Continuous Time:
2nd order

tricritical point
1st order

 
N

τ
=4:

2nd order
tricritical point

1st order
 

N
τ
=2 

1st order

behavior at low µ qualitatively the same, first order transition shifts to larger µ
no re-entrance in continuous time (also seen by [Ohnishi et al. 2012]
via auxilliary field Monte Carlo, see also → talk by T.Ichihara
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Phase Diagram of SC-LQCD, for small β

Connection Between Strong Coupling and Continuum Limit?Connection Between Strong Coupling and Continuum Limit?Connection Between Strong Coupling and Continuum Limit?Connection Between Strong Coupling and Continuum Limit?Connection Between Strong Coupling and Continuum Limit?

Various possible scenarios for the extension to finite β:

T /mB

 /mB



1st order

2nd

order

γ=1,N τ=2

γ=1,N τ=4

T /mB

 /mB



1st order

2nd

order

γ=1,N τ=2

γ=1,N τ=4

T /mB

 /mB



1st order

2nd

order

γ=1,N τ=2

γ=1,N τ=4

back plane: strong coupling phase diagram
front plane: continuum phase diagram (Nf = 4)

Questions we want to address:
does tricritical point move to smaller or larger µ as β is increased?
do the nuclear and chiral transition split?
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Phase Diagram of SC-LQCD, for small β

Derivation of O(β) effective actionDerivation of O(β) effective actionDerivation of O(β) effective actionDerivation of O(β) effective actionDerivation of O(β) effective action

Strong Coupling Partition function incorporating O(β) corrections:

Z =

∫
dχdχ̄dUeSG +SF =

∫
dχdχ̄ZF

〈
e−SG

〉
U

〈O〉U =
1

ZF

∫
dUOe−SF , ZF =

∫
dUe−SF =

∏
l=(x,µ)

z(x , µ)

plaquette expectation value before Grassmann integration:

〈
tr[UP + U†P ]

〉
U

=
1

ZF

∫
dUtr[UP + U†P ]e−SF =

(∏
l∈P

zl

)−1 19∑
s=1

F s
P(M,B, B̄)

(          )O (β)
≡ +
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Phase Diagram of SC-LQCD, for small β

Link Integrations for O(β) diagramsLink Integrations for O(β) diagramsLink Integrations for O(β) diagramsLink Integrations for O(β) diagramsLink Integrations for O(β) diagrams
One-Link integrals for links on the edge of an elementary plaquette

(based on techniques from [Creutz 1978], [Azakov & Aliev 1988]):

Jik =
1

3
χ̄kϕi︸︷︷︸
D1

−
1

6
MχMϕχ̄kϕi︸ ︷︷ ︸

D2

+
1

12
M2
χM2

ϕχ̄kϕi︸ ︷︷ ︸
D3

+
1

12
εii1 i2 εkk1k2 ϕ̄i1 ϕ̄i2χk1χk2︸ ︷︷ ︸

B1

+
1

32
εii1 i2 εkk1k2MχMϕϕ̄i1 ϕ̄i2χk1χk2 +

7

24
B̄ϕBχχ̄kφi +

1

48
εii1 i2MϕBχϕ̄i1 ϕ̄i2 χ̄k +

1

48
εkk1k2MχB̄ϕχk1χk2ϕi︸ ︷︷ ︸

B2

determine plaquette link product P = TrJikJklJlmJmi

result can be consistently re-expressed via
link weights: w(Dk ) = (Nc−k)!

Nc!(k−1)!
, w(B1) = 1

Nc !(Nc−1)!
, w(B2) = (Nc−1)!

Nc !

and site weights: v1 = Nc!, v2 = (Nc − 1)!, v3 = 1

D1

D2

D3

B1

B2
v 1 v 2 v 3

Grassman constraint on sites touching a plaquette altered Nc → Nc + 1
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Phase Diagram of SC-LQCD, for small β

Classification of O(β) DiagramsClassification of O(β) DiagramsClassification of O(β) DiagramsClassification of O(β) DiagramsClassification of O(β) Diagrams

Diagrams classified by external legs (monomers or external dimers)

D 2
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2

D1D2
3 D1D2D1D3

(D1D2)
2 D1
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Phase Diagram of SC-LQCD, for small β

Crosschecks at Finite TemperatureCrosschecks at Finite TemperatureCrosschecks at Finite TemperatureCrosschecks at Finite TemperatureCrosschecks at Finite Temperature

Croscheck on small lattices:
comparison between HMC and MDP algorithms agrees well
gauge observables are correctly obtained for various amq, aT :
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Phase Diagram of SC-LQCD, for small β

Gauge Observables at Zero DensityGauge Observables at Zero DensityGauge Observables at Zero DensityGauge Observables at Zero DensityGauge Observables at Zero Density

Polyakov loop expectation value: ratio of partition function w/o static quark Q,
measured via reweighting from the SC-ensemble:

〈L〉 =

∫
dχ̄dχ〈L〉UZF∫

dχ̄dχZF
∼ e−(FQ−F0)/T =

ZQ

Z , L(~x) = TrJNτ ,1(~x)

Nτ∏
t=1

Jt,t+1(~x)

〈L〉 and 〈Pt〉 are sensitive to the chiral transition
〈L〉 rises significantly, indicating “deconfinement”
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Phase Diagram of SC-LQCD, for small β

Gauge Observables at non-zero DensityGauge Observables at non-zero DensityGauge Observables at non-zero DensityGauge Observables at non-zero DensityGauge Observables at non-zero Density

Scan at finite density in polar coordinates (aT , aµ) 7→ (ρ, φ)

Polyakov loop behaves similar to baryon number density, but also receives
contributions from mesons
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Phase Diagram of SC-LQCD, for small β

Chiral susceptibility in the chiral limitChiral susceptibility in the chiral limitChiral susceptibility in the chiral limitChiral susceptibility in the chiral limitChiral susceptibility in the chiral limit

Full chiral susceptibility: χ = 1
V

∂2

∂(2amq)2 logZ can be expressed in terms of monomers:

χ = 1
(2amq)2L3Nt

(〈
N2

M
〉
− 〈NM〉2 − 〈NM〉

)
= 1

L3Nt

(∑
x1,x2

G(x1, x2)− 〈NM〉2
(2amq)2

)
In chiral limit:

χ ∼
〈

(ψ̄ψ)2
〉
is measured with high precision via Worm estimator G(x1, x2)

χ has no peak, FSS via: χL/Lγ/ν(t) = A + BtL1/ν , t = T−Tc
Tc

with 3d O(2) critical exponents
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Phase Diagram of SC-LQCD, for small β

Taylor Expansion for the SusceptibilityTaylor Expansion for the SusceptibilityTaylor Expansion for the SusceptibilityTaylor Expansion for the SusceptibilityTaylor Expansion for the Susceptibility

For fermionic observables, the leading order β correction can be measured:
obtain the slope of the transition temperature w.r.t. β from a
Taylor coefficient:

χ(β) = χ0 + βc(1)
χ +O(β2) with χ0 = Z2

Z ,

c(1)
χ = ∂

∂β
Z2(β)
Z(β)

∣∣∣
β=0

=
〈

(ψ̄ψ)2P
〉
−
〈

(ψ̄ψ)2
〉
〈P〉

Z2: 2-monomer sector sampled by G(x1, x2) via Worm,

necesssary condition: c(1)
χ needs to obey finite size scaling to modify aTc

one can show that in the thermodynamic limit:

c(1)
χ ' (c1 + c2L1/ν + c3t) in the vicinity of t = 0,

the shift in Tc is then related to scaling function parameters A, B and c2:

∆aTc (β)
·

= −βaTc
A
B c2
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Phase Diagram of SC-LQCD, for small β

Results on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero Density

We obtain for the slope: ∂
∂β

aTc (β) ' −0.24(3) at µ = 0

Shift in Tc at µ/T=0.00
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Phase Diagram of SC-LQCD, for small β

Results on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero DensityResults on the Slope at Zero and non-Zero Density

We obtain for the slope: ∂
∂β

aTc (β) ' −0.15(2) at µ/T = 0.29

Shift in Tc at µ/T=0.29
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Phase Diagram of SC-LQCD, for small β

Corrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagramCorrections to the SC-Phase diagram

The slope vanishes at the tricritial point and along the first order line
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linear extrapolation in β:
2nd order line at β=0
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ratio at strong coupling
Tc (µ=0)
µc (T =0)

≈ 1.403
0.57 = 2.46

too large compared to
mq = 0 continuum result

≈ 154 MeV
0.93 GeV = 0.165

but

Tc (µ=0)
µc (T =0)

↘ (β ↗)

at leading O(β)
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Conclusions

ConclusionsConclusionsConclusionsConclusionsConclusions

Achievements:
correct average plaquette and
Polyakov loop reproduced at
β = 0 (checked with HMC)
all measurements extended
to finite µ
〈L〉 and 〈Pt〉 are sensitive to
the chiral transition
slope of aTc determined at
finite density up to the
tricritical point

MF

our resultour result

Comparison with mean field results by Miura et. al,
Phys. Rev. D 80 (2009) 074034 (2009): good agreementFurther Goals:

O(β2) corrections needed
determine whether the chiral and nuclear transition split at finite β

Thank you for your attention!
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Conclusions

Backup: SC-LQCD at finite temperatureBackup: SC-LQCD at finite temperatureBackup: SC-LQCD at finite temperatureBackup: SC-LQCD at finite temperatureBackup: SC-LQCD at finite temperature

How to vary the temperature?
aT = 1/Nτ is discrete with Nτ even
aTc ' 1.5, i.e. Nτ c < 2 ⇒ we cannot address the phase transition!

Solution: introduce an anisotropy γ in the Dirac couplings:

Z(mq, µ, γ,Nτ ) =
∑
{k,n,l}

∏
b=(x,µ)

(3− kb)!

3!kb!
γ2kbδµ0

∏
x

3!

nx !
(2amq)nx

∏
l

w(`, µ)

Should we expect a/aτ = γ, as suggested at weak coupling?

No: meanfield predicts a/aτ = γ2, since γ2c = Nτ (d−1)(Nc+1)(Nc+2)
6(Nc+3)

⇒ sensible, Nτ -independent definition of the temperature: aT ' γ2

Nτ

Moreover, SC-LQCD partition function is a function of γ2

However: precise correspondence between a/aτ and γ2 not known
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Backup: The Fate of the Nuclear and Chiral TransitionBackup: The Fate of the Nuclear and Chiral TransitionBackup: The Fate of the Nuclear and Chiral TransitionBackup: The Fate of the Nuclear and Chiral TransitionBackup: The Fate of the Nuclear and Chiral Transition

Strong Coupling Limit:
finite temperature chiral transition takes place when spatial dimers vanish
nuclear and chiral transition coincide: 〈χ̄χ〉 vanishes as baryonic crystal forms

µ = 0,T = 0

t

0.57 0.75

aT

aμ

N τ  finite N τ→∞

1st order

TCP

2nd order

Phase Diagram in the Chiral Limit
T = 0, µ > µc , β = 0
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1st order
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2nd order
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Possibility for β > 0:
chiral transition takes place at larger µc than nuclear transition, as chiral
condensate can be non-zero even though baryonic crystal has formed
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T /mB

 /mB



1st order
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
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Conclusions

Backup Slide: SC + Plaquette Partition Function at O(β)Backup Slide: SC + Plaquette Partition Function at O(β)Backup Slide: SC + Plaquette Partition Function at O(β)Backup Slide: SC + Plaquette Partition Function at O(β)Backup Slide: SC + Plaquette Partition Function at O(β)

partition function can be expanded up to O(1/g2Nc ) as Grassmann integration terminates
at this order:

Z =

∫
dχdχ̄ZF

∏
P

(
1 +

1
g2

(∏
l∈P

zl

)−1 19∑
s=1

F s
P + . . .

)

new set of plaquette variables qP ∈ {0, . . .Nc} and auxiliary variables

qx =

x∈P∑
P

qP ∈ {0, . . .Nc}, qb =

b∈P∑
P

qP ∈ {0, . . .Nc}

help to write down Z after Grassmann integration:

Z =
∑
{k,n,`,q}

∏
b=(x,µ)

wb
∏

x wx
∏
`

w`
∏

P wP ,

wx = Nc!
nx !

(2amq)nx vi (x), wb = (Nc−kb)!
Nc!(kb−qb)!

, wP = g−2qP

nx +
∑

µ̂=±0̂,...±d̂

(
kµ̂(x) + Nc

2 |`µ̂(x)|
)

= Nc+qx
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Conclusions

Backup: Crosschecks at µ = 0, T = 0Backup: Crosschecks at µ = 0, T = 0Backup: Crosschecks at µ = 0, T = 0Backup: Crosschecks at µ = 0, T = 0Backup: Crosschecks at µ = 0, T = 0

Sampling average plaquette at finite β:

〈P〉 =
2

Vd(d − 1)

∂

∂β
log(Z) =

1
β
〈nP〉 , nP =

2
Vd(d − 1)

∑
P

qP

saturation expected: 〈np〉 ≤ Nc
2d(d−1)

(at most Nc plaquettes can join at a bond or site)
numerical results show indeed saturation of 〈np〉, ⇒ 〈P〉 → 0 for β →∞
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reweighting from the SC-ensemble, 〈P〉 = ZP/Z , gives very precise results
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Backup: FSS Scaling of Taylor CoefficientBackup: FSS Scaling of Taylor CoefficientBackup: FSS Scaling of Taylor CoefficientBackup: FSS Scaling of Taylor CoefficientBackup: FSS Scaling of Taylor Coefficient

Shift in Tc at µ/T=0.00
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The slope gets smaller for increasing µ
µ-dependence of the slope of the transition temperature
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