A high-statistics study of the nucleon axial charge and quark momentum fraction

Benjamin Jäger

In collaboration with S. Capitani, M. Della Morte, G. von Hippel, B. Knippschild, H.B. Meyer, T. Rae, H. Wittig
Motivation

Nucleon axial charge g_A

- Experimental value is well determined: \[g_A = 1.2701(25) \] \[\text{[PDG, 2013]} \]
- Ideal benchmark quantity for Lattice QCD
 - Simple matrix element → local operator with quark bilinears
 - No momentum involved at initial and final state
 - Isovecor quantity → No disconnected diagrams
- So far Lattice results are typically $\sim 10\%$ below experimental value

Quark momentum fraction $\langle x \rangle_{u-d}$

- Benchmark quantity for Lattice QCD calculations
- Lattice computations tend to overestimate $\langle x \rangle_{u-d}$
- Important quantity to understand hadron structure
Nucleon axial charge g_A

- Improved local axial current:
 $$O_3(x) = \overline{\psi}(x)\gamma_3\gamma_5\psi(x) + a\overline{c}_a\partial_3 P + \mathcal{O}(a^2)$$

- Build ratio of 3-pt and 2-pt: $R(t, t_s) : = \frac{C_A^3(t, t_s)}{C_2(t_s)}$

- Extract g_A^{bare} from ratio $R(t, t_s)$
 $$R(t, t_s)^{t, (t_s-t)\gg0} \rightarrow g_A^{\text{bare}} + \mathcal{O}(e^{-\Delta t}) + \mathcal{O}(e^{-\Delta(t_s-t)})$$

- Ratio should be independent of t and t_s

- Renormalize $g_A = Z_A(1 + b_a m_q) g_A^{\text{bare}}$

[Della Morte et al., 2008]
Simulation details

- $\mathcal{O}(a)$ improved Wilson fermions (Wilson clover) with $N_f = 2$
- CLS ensembles:

<table>
<thead>
<tr>
<th>β</th>
<th>a [fm]</th>
<th>lattice</th>
<th>L [fm]</th>
<th>m_π [MeV]</th>
<th>$m_\pi L$</th>
<th>Label</th>
<th># meas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.20</td>
<td>0.079</td>
<td>64×32^3</td>
<td>2.5</td>
<td>473</td>
<td>6.0</td>
<td>A3</td>
<td>2128</td>
</tr>
<tr>
<td>5.20</td>
<td>0.079</td>
<td>64×32^3</td>
<td>2.5</td>
<td>363</td>
<td>4.7</td>
<td>A4</td>
<td>3200</td>
</tr>
<tr>
<td>5.20</td>
<td>0.079</td>
<td>64×32^3</td>
<td>2.5</td>
<td>312</td>
<td>4.0</td>
<td>A5</td>
<td>4000</td>
</tr>
<tr>
<td>5.20</td>
<td>0.079</td>
<td>96×48^3</td>
<td>3.8</td>
<td>262</td>
<td>5.0</td>
<td>B6</td>
<td>2544</td>
</tr>
<tr>
<td>5.30</td>
<td>0.063</td>
<td>64×32^3</td>
<td>2.0</td>
<td>451</td>
<td>4.7</td>
<td>E5</td>
<td>4000</td>
</tr>
<tr>
<td>5.30</td>
<td>0.063</td>
<td>96×48^3</td>
<td>3.0</td>
<td>324</td>
<td>5.0</td>
<td>F6</td>
<td>3600</td>
</tr>
<tr>
<td>5.30</td>
<td>0.063</td>
<td>96×48^3</td>
<td>3.0</td>
<td>277</td>
<td>4.2</td>
<td>F7</td>
<td>3000</td>
</tr>
<tr>
<td>5.30</td>
<td>0.063</td>
<td>128×64^3</td>
<td>4.0</td>
<td>195</td>
<td>4.0</td>
<td>G8</td>
<td>4176</td>
</tr>
<tr>
<td>5.50</td>
<td>0.050</td>
<td>96×48^3</td>
<td>2.4</td>
<td>536</td>
<td>6.5</td>
<td>N4</td>
<td>600</td>
</tr>
<tr>
<td>5.50</td>
<td>0.050</td>
<td>96×48^3</td>
<td>2.4</td>
<td>430</td>
<td>5.2</td>
<td>N5</td>
<td>1908</td>
</tr>
<tr>
<td>5.50</td>
<td>0.050</td>
<td>96×48^3</td>
<td>2.4</td>
<td>340</td>
<td>4.0</td>
<td>N6</td>
<td>3784</td>
</tr>
<tr>
<td>5.50</td>
<td>0.050</td>
<td>128×64^3</td>
<td>3.2</td>
<td>270</td>
<td>4.4</td>
<td>O7</td>
<td>1960</td>
</tr>
</tbody>
</table>
Nucleon 2-pt function

\[a m_{\text{eff}} \]

\[N6 \, \beta = 5.5, \, m_\pi = 340 \, \text{MeV}, \, L = 2.4 \, \text{fm} \]

2-pt function: excited states have died out \(t \sim 12 \)
Nucleon axial charge g_A

Excited states still present from source and sink

Simple plateau fits depend on source-sink separation t_s
Nucleon axial charge g_A

\[f(t, t_s) = g_A + c_1 e^{-\Delta t} + c_2 e^{-\Delta (t_s-t)} + c_3 e^{-\Delta t_s} \]

- Included excitates states to fit ansatz

$N6 \beta = 5.5, m_\pi = 340 \text{ MeV}, L = 2.4 \text{ fm}$
Nucleon axial charge g_A

\[S(t_s) := \sum_{t=1}^{t_s-1} R(t, t_s) \xrightarrow{t_s \gg 0} c + t_s \left(g_{A}^{\text{bare}} + \mathcal{O}(e^{-\Delta t_s}) \right) \]

- Summed operator insertion method [L.Maiani et al., 1987]
- Extract g_A from the slope of a linear fit
Nucleon axial charge g_A

\[S(t_s) := \sum_{t=1}^{t_s-1} R(t, t_s) \xrightarrow{t_s \gg 0} c + t_s \left(g^\text{bare}_A + O(e^{-\Delta t_s}) \right) \]
Including excited states lead to higher value for g_A

Summation and excited state fit agree
Nucleon axial charge g_A

Check summation and excited state fit by larger t_s (up to $t_s \sim 1.4$ fm)

Signal-to-Noise ratio deteriorates quickly for large t_s
Results for g_A a year ago arXiv:1205.0180
Update: increased statistics and more chiral ensemble.
Chiral behaviour of nucleon axial charge g_A

No strong dependence on $m_\pi^2 \to$ linear fit
Chiral behaviour of nucleon axial charge g_A

Heavy Baryon ChPT inspired fit [T.R. Hemmert et al., 2003]
Chiral behaviour of nucleon axial charge g_A

Restrict fit to chiral ensembles ($m_\pi \leq 365$ MeV)

Plateau $t_s \sim 1.1$ fm

Summation
Restrict fit to chiral ensembles ($m_\pi \leq 365$ MeV)
Outline

1. Nucleon axial charge

2. Quark momentum fraction of the nucleon $\langle x \rangle_{u-d}$
Quark momentum fraction of the nucleon $\langle x \rangle_{u-d}$

1. Insert operator with derivatives (with zero momentum transfer):

$$O(x) = \overline{\psi}(x) \left(\gamma_0 \vec{D}_0 - \frac{1}{3} \gamma_k \vec{D}_k \right) \psi(x)$$

2. Build ratio of 3-pt and 2-pt: $R(t, t_s) := \frac{C^O_{3}(t,t_s)}{C^O_{2}(t_s)}$

3. Extract $\langle x \rangle_{u-d}^{\text{bare}}$ from ratio $R(t, t_s)$:

$$R(t, t_s) \xrightarrow{t,(t_s-t) \gg 0} m_N \langle x \rangle_{u-d}^{\text{bare}} + \mathcal{O}(e^{-\Delta t}) + \mathcal{O}(e^{-\Delta (t_s-t)})$$

4. Ratio should be independent of t and t_s

5. Renormalize $\langle x \rangle_{u-d}^{\text{bare}} \rightarrow \langle x \rangle_{u-d}$ using RI-MOM (not yet included)
Quark momentum fraction of the nucleon $\langle x \rangle_{u-d}$

- Plateaus depend on source-sink separation t_s
 - Very clear sign for excited states
- Summed operator insertion method works as for g_A
Conclusion

- Summed operator insertion method allows a systematic control of excited states
- Including excited states leads to agreement for the nucleon axial charge
- Chiral extrapolation improved by additional ensembles ($m^2_\pi < 200$ MeV)
- The quark momentum fraction suffers even more from excited states

Outlook

- Further improvements
 - Include renormalization for $\langle x\rangle_{u-d}$ using RI-MOM
 - Study finite size and volume effects (so far mild effect)
 - Simulations at the physical pion mass
 - Include a dynamical strange (and charm) quark
- Electromagnetic form factors \rightarrow T. Rae’s talk
Thank you for your attention!
Checking summation method on N6 for larger t_s

- $g_A [\text{all } t_s] = 1.201(0.037) \Leftrightarrow g_A [t_s \leq 22] = 1.211(0.034)$
g_A $B6$ $\beta = 5.2$, $m_\pi = 262$ MeV, $L = 3.8$ fm

g_A $F7$ $\beta = 5.3$, $m_\pi = 277$ MeV, $L = 3.0$ fm

$O7$ $\beta = 5.5$, $m_\pi = 270$ MeV, $L = 3.2$ fm

$t_s = 10$ $t_s = 16$ $t_s = 12$ $t_s = 17$ $t_s = 13$ $t_s = 22$ $t_s = 16$ $t_s = 22$ $t_s = 19$
Fit individual β to a constant

No clear sign of lattice artefacts ($\beta = 5.5$ tends to smaller g_A)
Heavy Baryon ChPT formula

- 6 free parameters: 3 are fixed to (physical) values

\[c_A = 1.5 \text{ GeV}, \Delta_0 = 0.2711 \text{ GeV} \text{ and } \lambda = 1 \text{ GeV} \]

\[g_A(m_{\pi}^2) = g_A^0 - \frac{(g_A^0)^3 m_{\pi}^2}{16 \pi^2 f_{\pi}^2} + 4 \left(C_{SSE}(\lambda) + \frac{c_A^2}{4 \pi^2 f_{\pi}^2} \left[\frac{155}{972} g_1 - \frac{17}{36} g_A^0 \right] \right) \]

\[+ \gamma \ln \left(\frac{m_\pi}{\lambda} \right) m_{\pi}^2 + \frac{4 c_A^2 g_A^0}{27 \pi^2 f_{\pi}^2 \Delta_0} m_{\pi}^2 + \frac{8}{27 \pi^2 f_{\pi}^2} c_A^2 g_A^0 m_{\pi}^2 R(m_{\pi}) \]

\[+ \frac{c_A^2 \Delta_0^2}{81 \pi^2 f_{\pi}^2} (25 g_1 - 57 g_A^0) \left(\ln \frac{2 \Delta_0}{m_{\pi}} - R(m_{\pi}) \right) \]

with

\[\gamma = \frac{1}{16 \pi^2 f_{\pi}^2} \left(\frac{50}{81} c_A g_1 - \frac{1}{2} g_A^0 - \frac{2}{9} c_A g_A^0 - (g_A^0)^3 \right) \]

\[R(m_{\pi}) = \sqrt{1 - \frac{m_{\pi}}{\Delta_0}} \left(\frac{\Delta_0}{m_{\pi}} + \sqrt{\frac{\Delta_0}{m_{\pi}} - 1} \right) \]