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Stochastic procedures

� Exact computation of the all-to-all unfeasible nowadays
� We can use stochastic techniques

– Invert a random set of sources |ηj〉 that form a basis up to
stochastic errors

– Properties


1
N

∑N
j=1 |ηj〉 = O

(
1√
N

)
1
N

∑N
j=1 |ηj〉 〈ηj | = I + O

(
1√
N

)
– In this work we use Z2 and Z4 noise sources

� So we get an unbiased estimation of the all-to-all
propagator

M |sj〉 = |ηj〉 −→ M−1E :=
1

N

N∑
j=1

|sj〉 〈ηj | ≈ M−1

� Error decresases as 1/
√
N
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The Truncated Solver Method

� Instead of solving M |sj〉 = |ηj〉 exactly, we aim at a low
precision estimation Bali, Collins, Schäffer 2007

– Cut the inverter (CG) at a certain number of iterations OR at a
given precision ρ2 ∼ 10−4

� Cheap but inaccurate −→ We introduce a bias we correct
stochastically

M−1
E :=

1

NHP

NHP∑
j=1

(
|sj〉 〈ηj |HP − |sj〉 〈ηj |LP

)
+

1

NLP

NHP+NLP∑
j=NHP+1

|sj〉 〈ηj |LP

� If the convergence in the inversions is fast, we can get
away with a low NHP

� Error should decrease essentially as 1/
√
NLP

� Requires loop-dependent fine-tuning
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Determination of the TSM parameters
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The one-end trick

� General trick that reduces variance, generally applied to
2pt Foster, Michael 1998; McNeile, Michael 2006

� Propagators in tmQCD can be arranged in a way that
allows the application of the one-end trick

� The difference of propagators in the twisted basis is

Mu −Md = 2iµγ5 M−1u −M−1d = −2iµM−1d γ5M
−1
u∑

X
(
M−1u −M−1d

)
= −2iµ

∑
r

〈
s†Xγ5s

〉
r

� Errors are considerably reduced
– The µ factor suppresses the noise
– The volume sum enhances statistics
– Improves signal-to-noise ratio from

(
1√
V

)
to O(1)



CaSToRC

The one-end trick

� In principle, the trick only works for the difference, but
an alternative version can be developed for the sum

ψ̄γ5γµψ → ψ̄γ5γµψ∑
X
(
M−1u + M−1d

)
= 2

∑
r

〈
s†γ5Xγ5DW s

〉
r

� Unfortunately, the results are not so good
– We lack the µ suppressing factor here
– The Dirac operator in the loop can increase the noise
– We still have the volume sum
– Similar results to time-dilution + HPE for physical strange mass
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Time-dilution

� Dilution splits the source in m pieces, eliminating
interactions among neighbors Bernardson et al. 1993

� We will use here dilution in time
� The Coherent Source Method allows us to calculate

several time-slices in a single inversion
– Put noise in distant time-slices
– Noise decreases exponentially
– If distant enough, the time-slices won’t interact
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The hopping parameter expansion (HPE)

� Expansion of the inverse fermionic matrix in the hopping
parameter

� For twisted mass fermions, Foster, McNeile, Michael 1999

M−1u = B − BHB + (BH)2 B − (BH)3 B + (BH)4M−1u

B = (1 + i2κµaγ5)−1 H = 2κD

� The first four terms are computed exactly. The last is

1

N

N∑
r

[
X (BH)4 srη

†
r

]
= Tr

[
X (BH)4M−1u

]
+ O

(
1√
N

)
� First terms in the expansion are expected to be the

noisiest
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Results: TSM performance, the one-end trick
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� NF=2+1+1, stats 56400 light, 58560 strange and charm
� mπ ≈ 380MeV, ms and mc physical
� σq → mq 〈N| q̄q |N〉, good for gq

A =→ 〈N| i q̄γµγ5q |N〉
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Results: TSM performance, time-dilution, HPE
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� NF=2+1+1, results for strange quark, stats 18628
� mπ ≈ 380MeV, ms and mc physical
� TSM always improves
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Results: TSM performance, a word on overhead

Method Quark sector HP Inv LP Inv Overhead RHP/LP

One-end tck Local Light ≈ 90s ≈ 2.2s ≈ 2.5s ≈ 26.7
One-end tck Dev Light ≈ 90s ≈ 2.2s ≈ 8.0s ≈ 10.0
One-end tck Local Strange ≈ 29s ≈ 0.6s ≈ 2.5s ≈ 16.9
One-end tck Dev Strange ≈ 29s ≈ 0.6s ≈ 8.0s ≈ 5.8
Time-dil. Strange ≈ 29s ≈ 0.6s ≈ 1.0s ≈ 20.7
Time-dil. + HPE Strange ≈ 29s ≈ 0.6s ≈ 1.2s ≈ 19.1
One-end tck Local Charm ≈ 3.3s ≈ 0.3s ≈ 2.5s ≈ 2.9
One-end tck Dev Charm ≈ 3.3s ≈ 0.3s ≈ 8.0s ≈ 1.7

� RHP/LP is the number of LP sources equivalent to one
HP source in terms of computer time

� If HP inversion expensive, TSM always pays off
� If HP inversion not so expensive, overhead plays key role
� Results depend on implementation!! Our

implementation: GPUs
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Results: One-end trick vs time-dilution + HPE @
strange quark mass
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� Plots at fixed insertion time
� One-end trick for the difference σs clearly superior
� In contrast, the sum g s

A seems to lag behind time-dilution
+ HPE

� The one-end trick gives all time-slices, plateau fit with
reduced correlations possible

� In the end, same performance with one-end trick and
time-dilution + HPE for g s

A
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Conclusions
� TSM highly reduces the variance while keeping the same

computer cost
� The one-end trick gives great results and all time-slices

at low cost, but shows reduced performance for heavy
quark with TSM

� Time-dilution + HPE has roughly the same cost as
time-dilution alone and improves results greatly

� Time-dilution requires several inversions for
one-derivative insertions

� HPE expected to work better with larger quark masses
� Rules of thumb:

– Light/strange quarks with one-end trick + TSM
– Heavy quarks with time-dilution + HPE + TSM
– For one-derivative contractions, one-end trick (+ TSM with

light/strange quarks)
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