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Motivation for work

I Understand low energy behavior of QCD

I Understand chiral symmetry breaking on the lattice

I Qualify the chiral properties of different fermion discretizations

I Implementation of a fully parallel Arnoldi algorithm expected
to have significant performance improvement over existing
implementations



WχPT

I Chiral Perturbation Theory with added terms that describe
discretization effects1

I The action for WχPT:

S = m
2 ΣVTr(U + U†) + ζ

2ΣVTr(U − U†)− a2V∆

∆ = W6[Tr(U + U†)]2 + W7[Tr(U − U†)]2 + W8Tr(U2 + U2†)

I γ5DW γ5 = D†
W

I Constraints for LECs23

W8 > 0,W6 < 0 and W7 < 0

I Sign of W8 + 2W6 determines the phase of the theory
1S.R. Sharpe, R.L. Singleton, arXiv:hep-lat/9804028
2P.H. Damgaard, K. Splittorff, J.J.M. Verbaarschot, arXiv:1001.2937
3M.T.Hansen, S.R.Sharpe, arXiv:1111.2404



Sharpe-Singleton scenario

I A phase present in QCD with Wilson fermions, with no
continuum analogue4

I Realized for

W8 + 2W6 < 0

4S.R. Sharpe, R.L. Singleton, arXiv:hep-lat/9804028



Sharpe-Singleton scenario

-400 -200 0 200 400

xΣV

0

0.2

0.4

0.6

0.8

1

ρ
cM

F

N
f=

2
(x

,m
,a

6
,a

8
)

m= +5, a
6
=i3, a

8
=3

I Quark mass has a collective effect on the eigenvalue
distribution, an effect not present in either quenched
simulations or in the Aoki phase

I Figure from M. Kieburg, K. Splittorff, J.J.M. Verbaarschot,
arXiv:1202.0620



Sharpe-Singleton scenario
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I Quark mass has a collective effect on the eigenvalue
distribution, an effect not present in either quenched
simulations or in the Aoki phase

I This is what we try to see

I Figure from M. Kieburg, K. Splittorff, J.J.M. Verbaarschot,
arXiv:1202.0620



Sharpe-Singleton scenario

I Pion remains massive even when quark mass goes to zero,
where as in the Aoki phase you get massless pions

I Another way to tell the phases apart

I Figure from K. Splittorff, arXiv:1211.1803



Setup

I SU(3) with Nf = 2

I Wilson fermions with clover improvement

I n-HYP smearing

I V = 124, β = 5.47, corresponding to a = 0.16 fm, and
m0 = 0.2, . . . ,−0.4

I Eigenvalues calculated using a parallelized Arnoldi algorithm
running on GPUs



Arnoldi algorithm

I Eigenvalue algorithm based on Krylov subspace projection

I Obtain information on the eigenspectrum of the operator
based on how it rotates a random vector after multiple
applications

I Krylov subspace: Kn(A, v0) = span[v0,Av0,A
2v0, . . . ,A

n−1v0]

I Creates n vectors qi , the Arnoldi vectors, that span the Krylov
subspace Kn

I Denote the matrix formed by the Arnoldi vectors q1 . . . qn by
Qn, then have Hn = Q†

nAQn

I Hn is upper Hessenberg, actually formed element by element
by specific inner products between qi

I Calculate the eigenvalues of Hn to obtain Ritz eigenvalues,
which in practice converge to eigenvalues of A

I We adopted the widely used implicitly restarted version of this
algorithm to get a robust numerical tool



Parallelized Arnoldi algorithm on the GPU

I Everything done on GPUs except for diagonalization of the
Hessenberg matrix

I Complexity of the problem: O(1012) FLOPS to obtain 50
eigenvalues on our setup

I Performance of GPU (Tesla M2070) vs. CPU (AMD Opteron)
(seconds per Arnoldi iteration):

I 2 GPUs: 2.5 - 8.9
I 4 GPUs: 1.3 - 3.3
I 8 GPUs: 0.8 - 2.6
I 2 CPUs (8 cores): 27.3 - 69
I 16 CPUs (64 cores): 2.4 - 4.8

I About 6x performance gain

I Still room for fine tuning of the algorithm



Results
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I 50 eigenvalues calculated from 100 configurations



Results
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I The simulations took two weeks of wall clock time, with most
time spent on the negative mass distributions



Results
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I Shows mass dependency in the shape of the distribution

I Cutoff effect because of sorting criterion



Results
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I You can see a hole forming as you approach zero quark mass,
not sure about a collective jump



Results

I In order to quantify mass dependence, calculate variance
I Effect slightly dampened because of cutoff



Results

I For the largest eigenvalues looks similar, but more subdued



Results

I Eigenvalues from three separate configurations illustrating
overlap between eigenvalues



Results

I Binning the eigenvalues smoothens the effect



Sharpe-Singleton scenario?

I We can not conclusively say in what phase we were in

I The distributions show mass dependence, but not sure about
the dramatic collective jump described by WχPT

I Pion mass measurements showed that mass was nonzero for
all values of quark mass, but measurements did not look
reliable



Conclusions and outlook

I Our implementation of the Arnoldi algorithm performs nicely

I Eigenvalue distributions show mass-dependent behavior

I Eigenvalues lie quite close to a circle

I No conclusive evidence for being in the Sharpe-Singleton
scenario

I Measuring LECs from the distribution not straightforward,
need to understand the mass dependence first

I Future work: bigger lattice, focusing polynomials,
Sharpe-Singleton-scenario, larger Nf


