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Motivation for work

Understand low energy behavior of QCD
Understand chiral symmetry breaking on the lattice

Qualify the chiral properties of different fermion discretizations
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Implementation of a fully parallel Arnoldi algorithm expected
to have significant performance improvement over existing
implementations



WxPT

» Chiral Perturbation Theory with added terms that describe
discretization effects’

» The action for WxPT:

S=2TVTr(U+ U+ $TVTr(U — Uh) — 2?va
A = We[Tr(U + UNJ2 + We[Tr(U — U2 + WeTr(U? + U2

> v5Dwys = DTW
» Constraints for LECs?3

Wg >0,Ws <0and W7 <0

» Sign of Wg + 2W determines the phase of the theory

!S.R. Sharpe, R.L. Singleton, arXiv:hep-lat/9804028
2P H. Damgaard, K. Splittorff, J.J.M. Verbaarschot, arXiv:1001.2937
3M.T.Hansen, S.R.Sharpe, arXiv:1111.2404




Sharpe-Singleton scenario

» A phase present in QCD with Wilson fermions, with no
continuum analogue®

» Realized for

Ws +2Ws < 0

*S.R. Sharpe, R.L. Singleton, arXiv:hep-lat/9804028



Sharpe-Singleton scenario
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» Quark mass has a collective effect on the eigenvalue
distribution, an effect not present in either quenched
simulations or in the Aoki phase

» Figure from M. Kieburg, K. Splittorff, J.J.M. Verbaarschot,
arXiv:1202.0620



Sharpe-Singleton scenario
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» Quark mass has a collective effect on the eigenvalue
distribution, an effect not present in either quenched
simulations or in the Aoki phase
» This is what we try to see

» Figure from M. Kieburg, K. Splittorff, J.J.M. Verbaarschot,
arXiv:1202.0620




Sharpe-Singleton scenario

» Pion remains massive even when quark mass goes to zero,
where as in the Aoki phase you get massless pions

» Another way to tell the phases apart
» Figure from K. Splittorff, arXiv:1211.1803



Setup

SU(3) with Nf =2
Wilson fermions with clover improvement
n-HYP smearing

V = 12% 3 = 5.47, corresponding to a = 0.16 fm, and
mo=0.2,...,—0.4

» Eigenvalues calculated using a parallelized Arnoldi algorithm
running on GPUs
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Arnoldi algorithm

» Eigenvalue algorithm based on Krylov subspace projection

» Obtain information on the eigenspectrum of the operator
based on how it rotates a random vector after multiple
applications

» Krylov subspace: K,,(A, vo) = span[v, Avg, A%vg, ..., A" Ly]

» Creates n vectors g;, the Arnoldi vectors, that span the Krylov
subspace K,

» Denote the matrix formed by the Arnoldi vectors q; ... g, by
Q. then have H, = QIAQ,

» H, is upper Hessenberg, actually formed element by element
by specific inner products between g;

» Calculate the eigenvalues of H, to obtain Ritz eigenvalues,
which in practice converge to eigenvalues of A

» We adopted the widely used implicitly restarted version of this
algorithm to get a robust numerical tool



Parallelized Arnoldi algorithm on the GPU

» Everything done on GPUs except for diagonalization of the
Hessenberg matrix

» Complexity of the problem: O(10%2) FLOPS to obtain 50
eigenvalues on our setup

» Performance of GPU (Tesla M2070) vs. CPU (AMD Opteron)
(seconds per Arnoldi iteration):

2 GPUs: 2.5 - 8.9

4 GPUs: 1.3 - 3.3

8 GPUs: 0.8 - 2.6

2 CPUs (8 cores): 27.3 - 69

16 CPUs (64 cores): 2.4 - 4.8

» About 6x performance gain

vV vy vy VvYyy

» Still room for fine tuning of the algorithm



Results

Eigenvaluesof D, + m
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» 50 eigenvalues calculated from 100 configurations



Results

Eigenvaluesof D, + m
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» The simulations took two weeks of wall clock time, with most
time spent on the negative mass distributions



Results

Eigenvaluesof D, + m
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» Shows mass dependency in the shape of the distribution

» Cutoff effect because of sorting criterion



Results

Eigenvaluesof D, + m
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» You can see a hole forming as you approach zero quark mass,
not sure about a collective jump



Results

Variance of individual eigenvalues
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» In order to quantify mass dependence, calculate variance

» Effect slightly dampened because of cutoff



Results

Variance of individual eigenvalues
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» For the largest eigenvalues looks similar, but more subdued



Results
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» Eigenvalues from three separate configurations illustrating
overlap between eigenvalues



Results

Variance of binned eigenvalues
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» Binning the eigenvalues smoothens the effect
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Sharpe-Singleton scenario?

» We can not conclusively say in what phase we were in

» The distributions show mass dependence, but not sure about
the dramatic collective jump described by WxPT

» Pion mass measurements showed that mass was nonzero for
all values of quark mass, but measurements did not look
reliable



Conclusions and outlook
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Our implementation of the Arnoldi algorithm performs nicely
Eigenvalue distributions show mass-dependent behavior
Eigenvalues lie quite close to a circle

No conclusive evidence for being in the Sharpe-Singleton
scenario

Measuring LECs from the distribution not straightforward,
need to understand the mass dependence first

Future work: bigger lattice, focusing polynomials,
Sharpe-Singleton-scenario, larger N¢



