

The Effect of the Low Energy Constants on the Spectral Properties of the Wilson Dirac Operator

Savvas Zafeiropoulos

July 29-August 3, 2013

Savvas Zafeiropoulos

Spectral Properties of the Wilson Dirac Operator 1/22

Wilson Chiral Perturbation Theory

• Wilson term breaks χ - symmetry explicitly

 \blacksquare Lattice spacing effects lead to new terms in $\chi-PT$

Sharpe and Singleton (1998), Rupak and Shoresh (2002), Baer, Rupak and Shoresh (2004)

- ϵ regime where in the thermodynamic, chiral and continuum limit $mV\Sigma$, $zV\Sigma$ and a^2VW_i kept fixed.
- At order a^2 it involves three Low Energy Constants (LECs)

$$Z_{N_f}(m,z;a) = \int_{\mathcal{M}} dU \ e^{-S[U]},$$

where the action is

$$S = -\frac{m}{2} \Sigma V \operatorname{tr} \left(U + U^{\dagger} \right) - \frac{z}{2} \Sigma V \operatorname{tr} \left(U - U^{\dagger} \right) + a^{2} V W_{6} [\operatorname{tr} \left(U + U^{\dagger} \right)]^{2} + a^{2} V W_{7} [\operatorname{tr} \left(U - U^{\dagger} \right)]^{2} + a^{2} V W_{8} \operatorname{tr} \left(U^{2} + U^{\dagger^{2}} \right).$$

Wilson Chiral Perturbation Theory

- Wilson term breaks χ symmetry explicitly
- \blacksquare Lattice spacing effects lead to new terms in $\chi-PT$

Sharpe and Singleton (1998), Rupak and Shoresh (2002), Baer, Rupak and Shoresh (2004)

- ϵ regime where in the thermodynamic, chiral and continuum limit $mV\Sigma$, $zV\Sigma$ and a^2VW_i kept fixed.
- At order a^2 it involves three Low Energy Constants (LECs)

$$Z_{N_f}(m,z;a) = \int_{\mathcal{M}} dU \ e^{-S[U]},$$

where the action is

$$S = -\frac{m}{2} \Sigma V \operatorname{tr} (U + U^{\dagger}) - \frac{z}{2} \Sigma V \operatorname{tr} (U - U^{\dagger}) + a^{2} V W_{6} [\operatorname{tr} (U + U^{\dagger})]^{2} + a^{2} V W_{7} [\operatorname{tr} (U - U^{\dagger})]^{2} + a^{2} V W_{8} \operatorname{tr} (U^{2} + U^{\dagger^{2}}).$$

Wilson Chiral Perturbation Theory

- Wilson term breaks χ symmetry explicitly
- Lattice spacing effects lead to new terms in χPT

Sharpe and Singleton (1998), Rupak and Shoresh (2002), Baer, Rupak and Shoresh (2004)

- ϵ regime where in the thermodynamic, chiral and continuum limit $mV\Sigma$, $zV\Sigma$ and a^2VW_i kept fixed.
- At order a^2 it involves three Low Energy Constants (LECs)

$$Z_{N_f}(m,z;a) = \int_{\mathcal{M}} dU \ e^{-S[U]},$$

where the action is

$$S = -\frac{m}{2} \Sigma V \operatorname{tr} (U + U^{\dagger}) - \frac{z}{2} \Sigma V \operatorname{tr} (U - U^{\dagger}) + a^{2} V W_{6} [\operatorname{tr} (U + U^{\dagger})]^{2} + a^{2} V W_{7} [\operatorname{tr} (U - U^{\dagger})]^{2} + a^{2} V W_{8} \operatorname{tr} (U^{2} + U^{\dagger^{2}})$$

- Facilitate simulations in the deep chiral regime by an exact, analytical understanding of the average behavior of the smallest eigenvalues
- Chiral symmetry breaking from lattice spacing
- Stability of lattice simulations

- Facilitate simulations in the deep chiral regime by an exact, analytical understanding of the average behavior of the smallest eigenvalues
- Chiral symmetry breaking from lattice spacing
- Stability of lattice simulations

- Facilitate simulations in the deep chiral regime by an exact, analytical understanding of the average behavior of the smallest eigenvalues
- Chiral symmetry breaking from lattice spacing
- Stability of lattice simulations

Introduction of the Model

- 4 - nar

■ Partition function of D_W with N_f flavors : $Z_{N_f}^{RMT,\nu} = \int dD_W \det^{N_f} (D_W + m) P(D_W)$

• $P(D_W) \rightarrow \text{is a Gaussian}$

 $D_W = \begin{pmatrix} aA & W \\ W^{\dagger} & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5 \text{ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012)}$

- A : $n \times n$ Hermitian
- **B** : $(n + \nu) \times (n + \nu)$ Hermitian
- W : $n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables
- At $a = 0 : D_W$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently $\nu = \sum_{k,W=1} \operatorname{sign}(\langle k|\gamma_5|k\rangle)$ (toh et al (1987)

•
$$P(D_W) \rightarrow \text{is a Gaussian}$$

$$D_W = \begin{pmatrix} aA & W \\ W^{\dagger} & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5 \text{ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012)}$$

- A : $n \times n$ Hermitian
- **B** : $(n + \nu) \times (n + \nu)$ Hermitian
- W : $n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables
- At $a = 0 : D_W$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently $\nu = \sum_{k,W=1} \operatorname{sign}(\langle k|\gamma_5|k\rangle)$ (toh et al (1987)

•
$$P(D_W) \rightarrow \text{is a Gaussian}$$

$$D_W = \begin{pmatrix} aA & W \\ W^{\dagger} & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5 \text{ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012)}$$

- $A: n \times n$ Hermitian
- **B** : $(n + \nu) \times (n + \nu)$ Hermitian
- W : $n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables
- At $a = 0 : D_W$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently $\nu = \sum_{W} \operatorname{sign}(\langle k | \gamma_5 | k \rangle)$ (toh et al (1987)

•
$$P(D_W) \rightarrow \text{is a Gaussian}$$

$$D_W = \begin{pmatrix} aA & W \\ W^{\dagger} & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5 \text{ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012)}$$

- $A: n \times n$ Hermitian
- B : $(n + \nu) \times (n + \nu)$ Hermitian
- W : $n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables
- At $a = 0 : D_W$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently $\nu = \sum_{m} \operatorname{sign}(\langle k | \gamma_5 | k \rangle)$ (tob et al (1987)

•
$$P(D_W) \rightarrow \text{is a Gaussian}$$

$$D_W = \begin{pmatrix} aA & W \\ W^{\dagger} & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5 \text{ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012)}$$

- $A: n \times n$ Hermitian
- B : $(n + \nu) \times (n + \nu)$ Hermitian
- W : $n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables
- At $a = 0 : D_W$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently $\nu = \sum_{vv} \operatorname{sign}(\langle k | \gamma_5 | k \rangle)$ (toh et al (1987)

•
$$P(D_W) \rightarrow \text{is a Gaussian}$$

$$D_W = \begin{pmatrix} aA & W \\ W^{\dagger} & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5 \text{ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012)}$$

- $A: n \times n$ Hermitian
- $B: (n + \nu) \times (n + \nu)$ Hermitian
- W : $n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables
- At $a = 0 : D_W$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently $\nu = \sum_{\text{res}} \operatorname{sign}(\langle k | \gamma_5 | k \rangle)$ (tob et al (1987)

•
$$P(D_W) \rightarrow \text{is a Gaussian}$$

$$D_W = \begin{pmatrix} aA & W \\ W^{\dagger} & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5 \text{ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012)}$$

- $A: n \times n$ Hermitian
- B : $(n + \nu) \times (n + \nu)$ Hermitian
- W : $n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables
- At $a = 0 : D_W$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently $\nu = \sum_{k,W=1} \operatorname{sign}(\langle k|\gamma_5|k\rangle)$ (toh et al (1987)

•
$$P(D_W) \rightarrow \text{is a Gaussian}$$

$$D_W = \begin{pmatrix} aA & W \\ W^{\dagger} & aB \end{pmatrix} + am_6 + a\lambda_7\gamma_5 \text{ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al (2011, 2012)}$$

- $A: n \times n$ Hermitian
- $B: (n + \nu) \times (n + \nu)$ Hermitian
- W : $n \times (n + \nu)$ Complex
- m_6 and λ_7 scalar random variables
- At $a = 0 : D_W$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently $\nu = \sum_{\lambda_h^W \in \mathbb{R}} \operatorname{sign}(\langle k | \gamma_5 | k \rangle)$ to et al (1987)

$\bullet D_W = \frac{1}{2}\gamma_\mu (\nabla_\mu + \nabla^*_\mu) - \frac{1}{2} \mathbf{a} \nabla^*_\mu \nabla_\mu$

- At $a \neq 0$ is non-Hermitian but retains γ_5 -Hermiticity $D_W^{\dagger} = \gamma_5 D_W \gamma_5$
- Eigenvalues of D_W because of the γ_5 -Hermiticity occur in complex conjugate pairs or are real
- \blacksquare ONLY eigenvectors corresponding to real eigenvalues have non vanishing chirality $\langle k|\gamma_5|k\rangle$

- $\bullet D_W = \frac{1}{2}\gamma_\mu (\nabla_\mu + \nabla^*_\mu) \frac{1}{2} \mathbf{a} \nabla^*_\mu \nabla_\mu$
- At $a \neq 0$ is non-Hermitian but retains γ_5 -Hermiticity $D_W^{\dagger} = \gamma_5 D_W \gamma_5$
- Eigenvalues of D_W because of the γ_5 -Hermiticity occur in complex conjugate pairs or are real
- \blacksquare ONLY eigenvectors corresponding to real eigenvalues have non vanishing chirality $\langle k|\gamma_5|k\rangle$

- $\bullet D_W = \frac{1}{2}\gamma_\mu (\nabla_\mu + \nabla^*_\mu) \frac{1}{2} a \nabla^*_\mu \nabla_\mu$
- At $a \neq 0$ is non-Hermitian but retains γ_5 -Hermiticity $D_W^{\dagger} = \gamma_5 D_W \gamma_5$
- Eigenvalues of D_W because of the γ_5 -Hermiticity occur in complex conjugate pairs or are real
- \blacksquare ONLY eigenvectors corresponding to real eigenvalues have non vanishing chirality $\langle k|\gamma_5|k\rangle$

- $\bullet D_W = \frac{1}{2}\gamma_\mu (\nabla_\mu + \nabla^*_\mu) \frac{1}{2} a \nabla^*_\mu \nabla_\mu$
- At $a \neq 0$ is non-Hermitian but retains γ_5 -Hermiticity $D_W^{\dagger} = \gamma_5 D_W \gamma_5$
- Eigenvalues of D_W because of the γ_5 -Hermiticity occur in complex conjugate pairs or are real
- \blacksquare ONLY eigenvectors corresponding to real eigenvalues have non vanishing chirality $\langle k|\gamma_5|k\rangle$

The Eigenvalue Densities

Savvas Zafeiropoulos

Spectral Properties of the Wilson Dirac Operator 7/22

nar

Lattice results vs RMT

(Deuzeman, Wenger and Wuilloud (2011))

 $\hat{m} = 4.8, \nu = 2$

(Damgaard, Heller and Splittorff (2011))

< E Spectral Properties of the Wilson Dirac Operator 8/22

1

5900

Lattice results vs RMT

The density of real eigenvalues of ${\cal D}_W$

Damgaard, Heller and Splittorff (2012))

Cumulative eigenvalue distributions of D_5 with all $W_{6/7/8}$ included at $\nu = 0$ (Deuzeman, Wenger and Wuilloud (2011))

nar

- \hat{a}_6 and \hat{a}_7 introduced through the addition of the Gaussian stochastic variable $\hat{m}_6 + \hat{\lambda}_7 \gamma_5$ to D_W
- $D = D_W + (m + \widehat{m}_6)\mathbf{1} + \widehat{\lambda}_7\gamma_5$
- When $\hat{a}_8 = 0 D_W$ is anti-Hermitian,
- the eigenvalues of $D_W(\widehat{\lambda}_7, \widehat{m}_6) = D m$ are given by

$$\widehat{z}_{\pm} = \widehat{m}_6 \pm i\sqrt{\lambda_W^2 - \widehat{\lambda}_7^2}$$

- \hat{a}_6 and \hat{a}_7 introduced through the addition of the Gaussian stochastic variable $\hat{m}_6 + \hat{\lambda}_7 \gamma_5$ to D_W
- $D = D_W + (m + \widehat{m}_6)\mathbf{1} + \widehat{\lambda}_7\gamma_5$
- When $\hat{a}_8 = 0 D_W$ is anti-Hermitian,
- the eigenvalues of $D_W(\widehat{\lambda}_7, \widehat{m}_6) = D m$ are given by

$$\widehat{z}_{\pm} = \widehat{m}_6 \pm i\sqrt{\lambda_W^2 - \widehat{\lambda}_7^2}$$

- \hat{a}_6 and \hat{a}_7 introduced through the addition of the Gaussian stochastic variable $\hat{m}_6 + \hat{\lambda}_7 \gamma_5$ to D_W
- $D = D_W + (m + \widehat{m}_6)\mathbf{1} + \widehat{\lambda}_7\gamma_5$
- When $\hat{a}_8 = 0 D_W$ is anti-Hermitian,

• the eigenvalues of $D_W(\widehat{\lambda}_7, \widehat{m}_6) = D - m$ are given by

$$\widehat{z}_{\pm} = \widehat{m}_6 \pm i\sqrt{\lambda_W^2 - \widehat{\lambda}_7^2}$$

- \hat{a}_6 and \hat{a}_7 introduced through the addition of the Gaussian stochastic variable $\hat{m}_6 + \hat{\lambda}_7 \gamma_5$ to D_W
- $D = D_W + (m + \widehat{m}_6)\mathbf{1} + \widehat{\lambda}_7\gamma_5$
- When $\hat{a}_8 = 0 D_W$ is anti-Hermitian,
- the eigenvalues of $D_W(\widehat{\lambda}_7, \widehat{m}_6) = D m$ are given by

$$\widehat{z}_{\pm} = \widehat{m}_6 \pm i\sqrt{\lambda_W^2 - \widehat{\lambda}_7^2}$$

Schematic plots of the effects of W_6 (left plot) and of W_7 (right plot). W_6 broadens the spectrum parallel to the real axis according to a Gaussian with width $4\hat{a}_6$, but does not change the continuum spectrum in a significant way. When $W_7 \neq 0$ and $W_6 = 0$ the purely imaginary eigenvalues invade the real axis through the origin and only the real (green crosses) are broadened by a Gaussian with width $4\hat{a}_7$

Distribution of additional real modes for $\nu = 1$

Notice that the two curves for $\hat{a}_7 = \hat{a}_8 = 0.1$ (right plot) are two orders smaller than the other curves (left plot). Notice the soft repulsion of the additional real modes from the origin at large \hat{a}_7 . The parameter \hat{a}_6 smooths the distribution.

-∢ ≣ →

naa

Log-Log plots of additional real modes vs \hat{a} for $\nu=0,2$

Log-log plots of N_{add} as a function of \hat{a}_8 for $\nu = 0$ (left plot) and $\nu = 2$ (right plot). W_6 has no effect on N_{add} . Saturation around zero due to a non-zero value of \hat{a}_7 . For $\hat{a}_7 = 0$ (lowest curves) the average number of additional real modes behaves like $\hat{a}_8^{2\nu+2}$. Kieburg, Verbaarschot and SZ (2011)

Savvas Zafeiropoulos

Spectral Properties of the Wilson Dirac Operator 13/22

Distribution of additional real modes for $\hat{a} >> 1$

At $\hat{a} >> 1$ ρ_r develops square root singularities at the boundaries. Finite matrix size+ finite lattice spacing $\rightarrow \rho_r$ has a tail dropping off much faster than the size of the support. The dependence on W_6 and ν is completely lost.

Projected distribution of the complex eigenvalues for $\nu = 1$

The distribution of the complex eigenvalues projected onto the imaginary axis for $\nu = 1$. Notice that \hat{a}_6 does not affect this distribution. The comparison of $\hat{a}_7 = \hat{a}_8 = 0.1$ with the continuum result (black curve) shows that $\rho_{\rm cp}$ is still a good quantity to extract the chiral condensate Σ at small lattice spacing.

200

Chirality distribution for $\nu = 1$

The distribution is symmetric around the origin. At small \widehat{a}_8 the distributions for $(\widehat{a}_6,\widehat{a}_7)=(1,0.1),(0.1,1)$ are almost the same Gaussian as the analytical result predicts. At large \widehat{a}_8 the maximum reflects the predicted square root singularity which starts to build up. We have not included the case $\widehat{a}_{6/7/8}=0.1$ since it exceeds the other curves by a factor of 10 to 100.

Extracting the LECs of Wilson chPT

Savvas Zafeiropoulos

Spectral Properties of the Wilson Dirac Operator 17/22

SQA

Extracting the LECs of Wilson chPT

Please do not read this

(Figure courtesy of M. Kieburg)

9. 9.	$\begin{split} & (z_{1},z_{2}) &= gr(z_{1},z_{2})G(y_{1}(z_{1})) = c_{1}M(z_{1}-z_{2})M(z_{1}+z_{2}), \\ & (z_{1},z_{2}) &= gr(z_{1}-z_{2}) = c_{1}M(z_{1}-z_{2}) = c_{1}M(z_{1}-z_{2}), \\ & (u_{1}) &= c_{1}M(z_{1}-z_{2}) = c_{1}M(z_{1}-z_{2}), \\ & (u_{2})(z_{1}-z_{2}) = c_{1}M(z_{1}-z_{2}), \\ & (u_{2})(z_{1}-z_{2}) = c_{1}M(z_{1}-z_{2}), \\ & (u_{2})(z_{1}-z_{2}) = c_{2}M(z_{1}-z_{2}), \\ & (u_{2})(z_{1}-z_{2}) = c_{2}M(z_{1}-z_{2}), \\ & (u_{2})(z_{1}-z_{2}), \\ & (u_{2})$	
	$ \begin{bmatrix} R_{1,1}^{(2)}(x^{2}, m) - \frac{1}{2\pi (x^{2} - m^{2} $	
	$\begin{split} & K^{(m)}(r_{1}^{2}) = \left[\frac{K^{(m)}_{1}(r_{1}^{2})} + $	
*2 ¹	$ \frac{d_{\Gamma}^{(m)}(m_{\ell},m_{\ell})}{d_{\Gamma}^{(m)}} = \frac{d_{\Gamma}^{(m)}(m_{\ell}^{(m)},m_{\ell})}{d_{\Gamma}^{(m)}} = \frac{d_{\Gamma}^{(m)}(m_{\ell},m_{\ell})}{d_{\Gamma}^{(m)}} = \frac{d_{\Gamma}^{(m)}(m_{\ell},m_{\ell})}{d_{\Gamma}^{(m)}} + \frac{d_{\Gamma}^{(m)}(m_{\ell},m_{\ell})}{d_{\Gamma}^{(m)}} \frac{d_{\Gamma}^{(m)}(m_{\ell},m_{\ell})}{d_{\Gamma}^{(m)}} \frac{d_{\Gamma}^{(m)}(m_{\ell},m_{\ell})}{d_{\Gamma}^{(m)}} + \frac{d_{\Gamma}^{(m)}(m_{\ell},m_{\ell})}{d_{\Gamma}^{(m)}(m_{\ell})} + \frac{d_{\Gamma}^{(m)}(m_{\ell},m_{\ell})}{d_{\Gamma}^{(m)}(m_{\ell})} \frac{d_{\Gamma}^{(m)}(m_{\ell},m_{\ell})}{d_{\Gamma}^{(m)}(m_{\ell})} \frac{d_{\Gamma}^{(m)}(m_{\ell},m_{\ell})}{d_{\Gamma}^{(m)}(m_{\ell})} \frac{d_{\Gamma}^{(m)}(m_{\ell},m_{\ell})}{d_{\Gamma}^{(m)}(m_{\ell})} + \frac{d_{\Gamma}^{(m)}(m_{\ell},m_{\ell})}{d_{\Gamma}^{(m)}(m_{\ell})} \frac{d_{\Gamma}^{(m)}(m_{\ell})}{d_{\Gamma}^{(m)}(m_{\ell})} \frac{d_{\Gamma}^{(m)}(m_{\ell})}{d_{\Gamma}^{(m)}(m_{\ell})} + \frac{d_{\Gamma}^{(m)}(m_{\ell})}{d_{\Gamma}^{(m)}(m_{\ell})} \frac{d_{\Gamma}^{(m)}(m_{\ell})}{d_{\Gamma}^{(m)}(m_{\ell})} + \frac{d_{\Gamma}^{(m)}(m_{\ell})}{d_{\Gamma}^{(m)}(m_{\ell})} \frac{d_{\Gamma}^{(m)}(m_{\ell})}{d_{\Gamma}^{(m)}(m_{\ell})} + $	
	$ \frac{ e^{-i\omega_{1}} $	1111

Savvas Zafeiropoulos

Spectral Properties of the Wilson Dirac Operator 18/22

SQR

Extracting the LECs of Wilson chPT

(Figure courtesy of M. Kieburg)

Savvas Zafeiropoulos

Spectral Properties of the Wilson Dirac Operator 19/22

(日) (日) (日)

JQ P

• Studied the effect of the three LECs on the spectrum of D_W .

- W_6 and W_7 can be interpreted as collective fluctuations of the spectrum while W_8 induces interactions among all modes.
- Analytical and numerical results of the eigenvalue densities of $D_{W} \label{eq:DW}$
- At small lattice spacing we propose the following quantities for the extraction of LECs

$$\widetilde{a}^{2}V \begin{bmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ -1 & -1 & 1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} W_{6} \\ W_{7} \\ W_{8} \end{bmatrix} = \frac{\pi^{2}}{8} \begin{bmatrix} 4N_{\text{add}}^{\nu=0}/\pi^{2} \\ 2\sigma^{2}/\Delta^{2} \\ \langle \widetilde{x}^{2} \rangle_{\rho_{\chi}}^{\nu=1}/\Delta^{2} \\ \langle \widetilde{x}^{2} \rangle_{\rho_{\chi}}^{\nu=2}/\Delta^{2} \end{bmatrix}$$

- Studied the effect of the three LECs on the spectrum of D_W .
- W₆ and W₇ can be interpreted as collective fluctuations of the spectrum while W₈ induces interactions among all modes.
- Analytical and numerical results of the eigenvalue densities of $D_{W} \label{eq:DW}$
- At small lattice spacing we propose the following quantities for the extraction of LECs

$$\widetilde{a}^{2}V \begin{bmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ -1 & -1 & 1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} W_{6} \\ W_{7} \\ W_{8} \end{bmatrix} = \frac{\pi^{2}}{8} \begin{bmatrix} 4N_{\text{add}}^{\nu=0}/\pi^{2} \\ 2\sigma^{2}/\Delta^{2} \\ \langle \widetilde{x}^{2} \rangle_{\rho_{\chi}}^{\nu=1}/\Delta^{2} \\ \langle \widetilde{x}^{2} \rangle_{\rho_{\chi}}^{\nu=2}/\Delta^{2} \end{bmatrix}$$

- Studied the effect of the three LECs on the spectrum of D_W .
- W₆ and W₇ can be interpreted as collective fluctuations of the spectrum while W₈ induces interactions among all modes.
- Analytical and numerical results of the eigenvalue densities of D_{W}
- At small lattice spacing we propose the following quantities for the extraction of LECs

$$\widetilde{a}^{2}V \begin{bmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ -1 & -1 & 1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} W_{6} \\ W_{7} \\ W_{8} \end{bmatrix} = \frac{\pi^{2}}{8} \begin{bmatrix} 4N_{\text{add}}^{\nu=0}/\pi^{2} \\ 2\sigma^{2}/\Delta^{2} \\ \langle \widetilde{x}^{2} \rangle_{\rho_{\chi}}^{\nu=1}/\Delta^{2} \\ \langle \widetilde{x}^{2} \rangle_{\rho_{\chi}}^{\nu=2}/\Delta^{2} \end{bmatrix}$$

- Studied the effect of the three LECs on the spectrum of D_W .
- W₆ and W₇ can be interpreted as collective fluctuations of the spectrum while W₈ induces interactions among all modes.
- Analytical and numerical results of the eigenvalue densities of D_W
- At small lattice spacing we propose the following quantities for the extraction of LECs

$$\widetilde{a}^{2}V \begin{bmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ -1 & -1 & 1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} W_{6} \\ W_{7} \\ W_{8} \end{bmatrix} = \frac{\pi^{2}}{8} \begin{bmatrix} 4N_{\text{add}}^{\nu=0}/\pi^{2} \\ 2\sigma^{2}/\Delta^{2} \\ \langle \widetilde{x}^{2} \rangle_{\rho_{\chi}}^{\nu=1}/\Delta^{2} \\ \langle \widetilde{x}^{2} \rangle_{\rho_{\chi}}^{\nu=2}/\Delta^{2} \end{bmatrix}$$

Stay Tuned!

for upcoming results

Savvas Zafeiropoulos

-Spectral Properties of the Wilson Dirac Operator 21/22

MQ (P

Thank you for your attention!

Collaborators: Mario Kieburg 8E 17.30 A classification of 2- dim Lattice Theory Jacobus Verbaarschot 7D 15.40 Discretization Effects in the ϵ Domain of QCD