Monte Carlo studies on the expanding behavior of the early universe in the Lorentzian type IIB matrix model

Yuta Ito (SOKENDAI)

In collaboration with S.-W. Kim(KIAS), J. Nishimura(KEK, SOKENDAI), A. Tsuchiya(Shizuoka University)

Lattice 2013 in Mainz, Aug. 1

Introduction

Theory	QCD	String theory
Non-perturbative formulation	Lattice gauge theory	Matrix model

□IIB matrix model

Euclidean version Ishibashi-Kawai-Kitazawa-Tsuchiya ('97)

Lorentzian version Kim-Nishimura-Tsuchiya ('11) We can study with "real time".

Plan

✓Introduction

- Definition of the Lorentzian IIB matrix model
- Exponential expansion at <u>early time</u>
- Power-law $(t^{1/2})$ expansion at <u>late time</u>
- Summary

Lorentzian IIB matrix model

□ The action

$$S_{\rm b} = -\frac{1}{4g^2} \operatorname{tr} \left[A_{\mu}, A_{\nu}\right]^2 \qquad \text{metric } \eta = diag(-1, 1, \dots, 1)$$
$$S_{\rm f} = -\frac{1}{2g^2} \operatorname{tr} \Psi_{\alpha} \left(\mathcal{C}\Gamma^{\mu}\right)_{\alpha\beta} \left[A_{\mu}, \Psi_{\beta}\right]$$

 $\begin{bmatrix} A_{\mu} & (\mu = 0, \dots, 9) & : \text{Lorentz vector} \\ \Psi_{\alpha} & (\alpha = 1, \dots 16) & : \text{Majorana-Weyl spinor} \end{bmatrix} N \times N \text{ Hermitian matrices}$

We deal with "real time" instead of imaginary timeSO(9,1) symmetry

□ The time coordinate is represented

by the eigenvalue distribution of A_0

Diagonalize A₀

□ SU(N) transformation

 $\begin{bmatrix} A_{\mu} \to U A_{\mu} U^{\dagger} \\ \Psi^{\alpha} \to U \Psi^{\alpha} U^{\dagger} \end{bmatrix}$

□ To study time-evolution interpreted as discrete time • diagonalize A_0 $A_0 = diag(\alpha_1, \alpha_2, \dots, \alpha_N)$

order eigenvalues in this way

 $\alpha_1 < \alpha_2 < \cdots < \alpha_N$

Definition of time-evolution

Talk plan

✓Introduction

✓ Definition of the Lorentzian IIB matrix model

- Exponential expansion at <u>early time</u>
- Power-law $(t^{1/2})$ expansion at <u>late time</u>
- Summary

Exponential expansion

□ In order to see expanding of 9d space for each time t, we define 1

 $R(t)^{2} = \frac{1}{n} tr \bar{A}_{i}^{2}(t)$

Effects of fermionic action

$$S_{\rm f} = \operatorname{tr} \left(\Psi_{\alpha} \left(\Gamma^{\mu} \right)_{\alpha\beta} [A_{\mu}, \Psi_{\beta}] \right)$$

$$= \operatorname{tr} \left(\Psi_{\alpha} \left(\Gamma^{0} \right)_{\alpha\beta} [A_{0}, \Psi_{\beta}] \right) + \operatorname{tr} \left(\Psi_{\alpha} \left(\Gamma^{i} \right)_{\alpha\beta} [A_{i}, \Psi_{\beta}] \right)$$

The important term for early time

The important term for late time

Toy model for early time

$$Pf(M(A)) = \Delta^{d-1} = \prod_{i>j} (\alpha_i - \alpha_j)^{2(d-1)}$$

Repulsive force between eigenvalues of A_0

Toy model for late time

Pf(M(A)) = 1

Quench fermions

Exponential expansion for early time in the toy model

• approximate fermionic action in early time

$$Pf(M(A)) = \Delta^{d-1} = \prod_{i>j} (\alpha_i - \alpha_j)^{2(d-1)}$$

plan

✓Introduction

✓ Definition of the Lorentzian IIB matrix model

✓ Exponential expansion at <u>early time</u>

- Power-law $(t^{1/2})$ expansion at <u>late time</u>
- Summary

Power-law expansion for late time in the toy model

D Toy model with quenching fermions

Talk plan

✓Introduction

✓ Definition of the Lorentzian IIB matrix model

✓ Exponential expansion at <u>early time</u>

✓ Power-law $(t^{1/2})$ expansion at <u>late time</u>

• Summary

Summary

□ The Lorentzian IIB MM

 \cdot non-perturbative formulation of string theory.

□ <u>Previous work</u> - Kim-Nishimura-Tsuchiya('11)

•3 out of 9 spatial directions start to expand.

 $\Box \underline{In this work}$

1) exponential expansion is observed. \Rightarrow Inflation

2) Toy model
$$\rightarrow$$
 we can study longer time.
 \square early time
exponential expansion Δ^{d-1} =

$$\Delta^{d-1} = \prod_{i>j} \left(\alpha_i - \alpha_j\right)^{2(d-1)}$$

□ late time power-law $(t^{1/2})$ expansion

Pf(M(A)) = 1

Expected scenario for full Lorentzian IIB MM

□ Future works

Study the late time behaviors directly

(instead of using toy model)

Renormalization group method

(integrate out early time d.o.f.)

Inv	vestigate the t	ransition	
	$R(t) \sim e^{\Lambda t}$		$R(t) \sim t^{1/2}$
	inflation	Big bang?	Radiation dominated

□ Related works

Studies of classical eq. of motion in Lorentzian IIB MM

FRW universe

Steinacker('11) Kim-Nishimura-Tsuchiya('11)

Realization of the standard model particles C-S-Z ('11),

C-S-Z ('11), Aoki ('11) Nishimura-Tsuchiya ('11)