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Discretisation of the non-linear SUSY O(N) σ-model Continuum model

Constructing a non-linear SUSY O(N) σ-model

Consider a superfield

Φ = φ+ i θ̄ψ +
i

2
θ̄θf .

φ and f are real N-tuples of scalar fields and ψ is an N-tuple of
Majorana fields.

Demand the constraint ΦΦ = 1 .

Constraints in component space

φ2 = 1 , φψ = 0 and φf =
i

2
ψψ .
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Discretisation of the non-linear SUSY O(N) σ-model Continuum model

Lagrangian density

SUSY O(N)-invariant Lagrangian density

L =
1

2g2
DΦDΦ|θ̄θ ,

with Dα = ∂θ̄α + i(γµθ)α∂µ .

EOM implies that f and φ must be parallel, so the on-shell
Lagrangian density in component fields is

L =
1

2g2

(
∂µφ∂

µφ+ iψ/∂ψ +
1

4
(ψψ)2

)
,

where φ = (φ1, φ2, .., φN), and ψ = (ψ1, ψ2, .., ψN) where ψi is a
Majorana spinor with ψi = ψT

i C.

[Witten ’77; Ferrara, Vecchia ’77]
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Discretisation of the non-linear SUSY O(N) σ-model Continuum model

Symmetries

Invariant under the N = 1 supersymmetry transformations

δφ = i ε̄ψ and δψ = (/∂ +
i

2
ψ̄ψ)φε

The action and the constraints satisfy the global O(N)-symmetry
“flavour”-symmetry.

Chiral Z2-symmetry: ψ → iγ5ψ with γ5 = iγ0γ1

∃ N = 2 extension for nonlinear σ−models with Kähler target
manifold [Zumino ’79], e.g. O(3) [Flore, Körner, Wipf, Wozar ’12]
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Discretisation of the non-linear SUSY O(N) σ-model Discretisation of the action

Discretisation

To solve the fermion doubling problem we use the Wilson derivative.

∂̂Wµ (r) = ∂̂Sµ −
ra

2
∆W

→ Fine tuning of mass parameter.
→ Explicit breaking of chiral-symmetry and SUSY.
→ Also Wilson derivative for the boson.
→ Yields nearest neighbour interaction and diagonal neighbour interaction

for the bosonic fields.

Good experience in our earlier work with the WZ-model. And by
others [Golterman, Petcher ’89; Catterall et al. ’03; Wipf et al. since ’07].

Only surviving symmetry on the lattice: global “flavour”-rotation .
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Discretisation of the non-linear SUSY O(N) σ-model Constraints in the path integral

Constraints in the path integral

Constraint φψ = 0 and φ2 = 1 enter the partition function

Z =

∫
Dφ δ(φ2 − 1)Dψ δ(φψ)e−S[φ,ψ] .

With ∫
dηδ(η − η′)f (η) =

∫
dη(η − η′)f (η) = f (η′)

where η is a Grassmann variable, one obtains for the fermionic
constraint

Z =

∫
Dφ δ(φ2 − 1)Dψ

 N∑
i ,j=1

φiφjψiψj

 e−S[φ,ψ,ψ] ,
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Loop formulation Fermionic loop expansion

Loop Expansion of the Majorana Wilson fermions

Expand fermionic action using the nilpotency of Grassmann elements.

e

∑
i,x
ψi,xψi,x

=
∏
x ,i

(1− ψi ,xψi ,x) =
∏
x ,i

1∑
mi,x=0

(
−ψi ,xψi ,x

)mi,x

Partition function becomes a sum over all:

× Hopping terms ψi ,xPµψi ,x+µ
x x + µ

Pµ =
(1−γµ)

2

× Monomer terms ψi ,xψi ,x

× Constraints ψi ,xψj ,x
i = j i 6= j

and

Configurations with non-vanishing weight in Z need all ψi , ψi to
appear exactly once (nilpotency) on every lattice site.
→ Only closed fermion loops survive the integration.
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Loop formulation Fermionic loop expansion

Loop expansion of the Majorana Wilson fermions

The contribution of the fermionic strings to Z is only determined by
their geometry (number of rotations and corners).

If the loops are self-avoiding, the topologies

L00 L10 L01 L11

hold all information about the fermionic geometry.

→ Sign of fermion loops under perfect control.

For N = 2 the loops are self-avoiding and the four fermi term is
irrelevant. This changes for N > 2.

Simulate fermions by enlarging the configuration space by an open
fermionic string. [Wenger ’08]
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Loop formulation Graphical representation

N = 2

Self-avoiding, non-backtracking and closed fermion loops

M
g2φ

2
r

(
1
g2

)2

φ2
r

1√
2

(
1
g2

)2

φ2
r

(
1
g2

)2

φrφg
1√
2

(
1
g2

)2

φrφg

flavour diagonal constraint

flavour changing constraint

mass term

red fermion line

green fermion line
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Loop formulation Graphical representation

N = 3

Crucial difference for N > 2: loops are no longer self-avoiding.

Topology holds no information about the sign (geometry) of the
configuration.
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Loop formulation Bosonic bond representation

Bosonic bond representation

Perform expansion of the bosonic action.

Two types of bonds

nearest neighbour bonds diagonal bonds

φx φx+0̂

φx+1̂

and
φx

φx+0̂+1̂

φx+0̂−1̂

∃ an analytic form of the bosonic weight for each bond configuration
for any O(N).
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Results for O(2) Chiral point

Massless point

Critical bare mass mc , where Fermions are massless, i.e. Zpp/Zap = 0
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Results for O(2) Chiral point

Massless point infinite volume extrapolation

Obtaining the critical mass in the infinite volume limit at fixed coupling g2.
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Results for O(2) Masses in the system

Fermion and boson mass at fixed coupling

Measure correlators ψ(τ)ψ(τ + t) and φ(τ)φ(τ + t) and fit
a cosh(m(t − Lt/2)) at fixed g2 = 0.25 and Lt = 32.
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Results for O(2) Mass degeneracy

Mass degeneracy

Simulations for various lattice sizes at the critical point mc (determined
via Zpp/Zap) at fixed coupling g2 = 0.25.
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Results for O(2) Ward identity

Ward identity

A Ward identiy can be constructed which depends only on the bosonic
action 〈SB〉. Non zero vortex-density 〈ρv 〉 like in non-SUSY O(2).
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Results for O(2) Conclusion

Conclusion and outlook

We constructed a fermion loop expansion for the non-linear SUSY
O(N) σ-model (essentially implementable for any N).

For N = 2 at fine tuned fermion mass we observe a mass degeneracy
trend and an intact Ward identity. This gives us strong indications for
a SUSY continuum limit.

Proof of concept with N = 2. Use loop-expansion also for N = 3
where,

loops are no longer self avoiding. May lead to fluctuating sign.
data already exist to compare. [Flore, Körner, Wipf, Wozar ’12]

Implement description, where integration over all flavours is already
performed.

Check of SUSY continuum limit if only ∂̂S is used for the boson.
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