Loop formulation for the supersymmetric non-linear $O(N) \sigma$ -model

Urs Wenger and Kyle Steinhauer

University of Bern

steinhauer@itp.unibe.ch

Lattice 2013

Mainz, Germany

• = • •

Overview

- **1** Discretisation of the non-linear SUSY $O(N) \sigma$ -model
 - Continuum model
 - Discretisation of the action
 - Constraints in the path integral
- 2 Loop formulation
 - Fermionic loop expansion
 - Graphical representation
 - Bosonic bond representation

3 Results for O(2)

- Chiral point
- Masses in the system
- Mass degeneracy
- Ward identity

Constructing a non-linear SUSY $O(N) \sigma$ -model

• Consider a superfield

$$\Phi = \phi + i\bar{\theta}\psi + \frac{i}{2}\bar{\theta}\theta f \,.$$

- ϕ and f are real N-tuples of scalar fields and ψ is an N-tuple of Majorana fields.
- Demand the constraint $\Phi \Phi = 1$.
- Constraints in component space

$$\phi^2 = 1$$
, $\phi \psi = 0$ and $\phi f = \frac{i}{2} \overline{\psi} \psi$.

Lagrangian density

• SUSY O(N)-invariant Lagrangian density

$${\cal L} = {1 \over 2g^2} \overline{D\Phi} D\Phi |_{ar{ heta} heta} \; ,$$

with $D_{\alpha} = \partial_{\bar{\theta}^{\alpha}} + i(\gamma^{\mu}\theta)_{\alpha}\partial_{\mu}$.

 EOM implies that f and φ must be parallel, so the on-shell Lagrangian density in component fields is

$$\mathcal{L} = rac{1}{2g^2} \left(\partial_\mu \phi \partial^\mu \phi + i \overline{\psi} \partial \!\!\!/ \psi + rac{1}{4} (\overline{\psi} \psi)^2
ight) \,,$$

where $\phi = (\phi_1, \phi_2, ..., \phi_N)$, and $\psi = (\psi_1, \psi_2, ..., \psi_N)$ where ψ_i is a Majorana spinor with $\overline{\psi}_i = \psi_i^T C$.

[Witten '77; Ferrara, Vecchia '77]

Symmetries

• Invariant under the $\mathcal{N}=1$ supersymmetry transformations

$$\delta \phi = i \overline{\epsilon} \psi$$
 and $\delta \psi = (\partial \!\!\!/ + \frac{i}{2} \overline{\psi} \psi) \phi \epsilon$

- The action and the constraints satisfy the global O(N)-symmetry "flavour"-symmetry.
- Chiral \mathbb{Z}_2 -symmetry: $\psi \to i\gamma_5 \psi$ with $\gamma_5 = i\gamma_0 \gamma_1$
- $\exists \mathcal{N} = 2$ extension for nonlinear σ -models with Kähler target manifold [Zumino '79], e.g. O(3) [Flore, Körner, Wipf, Wozar '12]

イロト イポト イヨト イヨト

Discretisation

• To solve the fermion doubling problem we use the Wilson derivative.

$$\hat{\partial}^{\mathcal{W}}_{\mu}(r)=\hat{\partial}^{\mathcal{S}}_{\mu}-rac{ra}{2}\Delta^{\mathcal{W}}$$

$\rightarrow\,$ Fine tuning of mass parameter.

- $\rightarrow\,$ Explicit breaking of chiral-symmetry and SUSY.
- $\rightarrow\,$ Also Wilson derivative for the boson.
- $\rightarrow\,$ Yields nearest neighbour interaction and diagonal neighbour interaction for the bosonic fields.
- Good experience in our earlier work with the WZ-model. And by others [Golterman, Petcher '89; Catterall et al. '03; Wipf et al. since '07].
- Only surviving symmetry on the lattice: global "flavour"-rotation .

(人間) トイヨト イヨト

Constraints in the path integral

 $\bullet\,$ Constraint $\phi\psi=0$ and $\phi^2=1$ enter the partition function

$$Z = \int \mathcal{D}\phi \, \delta(\phi^2 - 1) \mathcal{D}\psi \, \delta(\phi\psi) e^{-S[\phi,\psi]} \, .$$

• With
$$\int d\eta \delta(\eta-\eta')f(\eta) = \int d\eta(\eta-\eta')f(\eta) = f(\eta')$$

where $\boldsymbol{\eta}$ is a Grassmann variable, one obtains for the fermionic constraint

$$Z = \int \mathcal{D}\phi \,\delta(\phi^2 - 1)\mathcal{D}\psi \left(\sum_{i,j=1}^N \phi_i \phi_j \overline{\psi}_i \psi_j\right) e^{-S[\phi, \overline{\psi}, \psi]} \,,$$

Loop Expansion of the Majorana Wilson fermions

• Expand fermionic action using the nilpotency of Grassmann elements.

$$e^{\sum_{i,x}\overline{\psi}_{i,x}\psi_{i,x}}_{x,i} = \prod_{x,i} (1 - \overline{\psi}_{i,x}\psi_{i,x}) = \prod_{x,i} \sum_{m_{i,x}=0}^{1} (-\overline{\psi}_{i,x}\psi_{i,x})^{m_{i,x}}$$

• Partition function becomes a sum over all:

 $\begin{array}{ccc} \times \text{ Hopping terms} & \overline{\psi}_{i,x} P_{\mu} \psi_{i,x+\mu} & & & \\ \times \text{ Monomer terms} & \overline{\psi}_{i,x} \psi_{i,x} & & & \\ \times \text{ Constraints} & & \overline{\psi}_{i,x} \psi_{j,x} & & & \\ \end{array}$

• Configurations with non-vanishing weight in Z need all $\overline{\psi}_i, \psi_i$ to appear exactly once (nilpotency) on every lattice site.

 $\rightarrow\,$ Only closed fermion loops survive the integration.

Loop expansion of the Majorana Wilson fermions

- The contribution of the fermionic strings to Z is only determined by their geometry (number of rotations and corners).
- If the loops are self-avoiding, the topologies

hold all information about the fermionic geometry.

- $\rightarrow\,$ Sign of fermion loops under perfect control.
- For N = 2 the loops are self-avoiding and the four fermi term is irrelevant. This changes for N > 2.
- Simulate fermions by enlarging the configuration space by an open fermionic string. [Wenger '08]

N = 2

N = 3

Crucial difference for N > 2: loops are no longer self-avoiding.

• Topology holds no information about the sign (geometry) of the configuration.

- 4 同 6 4 日 6 4 日 6

Bosonic bond representation

- Perform expansion of the bosonic action.
- Two types of bonds

nearest neighbour bonds

• \exists an analytic form of the bosonic weight for each bond configuration for any O(N).

Massless point

Critical bare mass m_c , where Fermions are massless, i.e. $Z_{pp}/Z_{ap} = 0$

Massless point infinite volume extrapolation

Obtaining the critical mass in the infinite volume limit at fixed coupling g^2 .

Fermion and boson mass at fixed coupling

Measure correlators $\overline{\psi}(\tau)\psi(\tau+t)$ and $\phi(\tau)\phi(\tau+t)$ and fit $a\cosh(m(t-L_t/2))$ at fixed $g^2 = 0.25$ and $L_t = 32$.

Mass degeneracy

Simulations for various lattice sizes at the critical point m_c (determined via Z_{pp}/Z_{ap}) at fixed coupling $g^2 = 0.25$.

Ward identity

A Ward identiy can be constructed which depends only on the bosonic action $\langle S_B \rangle$. Non zero vortex-density $\langle \rho_v \rangle$ like in non-SUSY O(2).

Conclusion and outlook

- We constructed a fermion loop expansion for the non-linear SUSY $O(N) \sigma$ -model (essentially implementable for any N).
- For N = 2 at fine tuned fermion mass we observe a mass degeneracy trend and an intact Ward identity. This gives us strong indications for a SUSY continuum limit.
- Proof of concept with N = 2. Use loop-expansion also for N = 3 where,
 - loops are no longer self avoiding. May lead to fluctuating sign.
 - data already exist to compare. [Flore, Körner, Wipf, Wozar '12]
- Implement description, where integration over all flavours is already performed.
- Check of SUSY continuum limit if only $\hat{\partial}^{S}$ is used for the boson.

(日) (周) (三) (三)