

# Eigenvalue spectrum of lattice $\mathcal{N} = 4$ super Yang-Mills

(work in progress)

# David J. Weir Helsinki Institute of Physics

with Simon Catterall, Poul H. Damgaard, Thomas DeGrand and Dhagash Mehta

Lattice 2013

#### Outline

- 1. Introduction
- 2.  $\mathcal{N} = 4$  SYM on the lattice
- 3. Techniques used
- 4. Pfaffian
- 5. Eigenvalue spectrum general results
- 6. Mass anomalous dimension
- 7. Crude attempt at Patella's calculation
- 8. Conclusions

- $\mathcal{N} = 4$  SYM is of great theoretical interest
  - Very elegant theory; maximal supersymmetry
  - AdS/CFT correspondence
  - BSM physics, phenomenology
  - Connections to string theory

- Heavily studied analytically, simulations are much more recent
- Putting supersymmetry on the lattice is a fascinating problem
- Need to find a way to deal with breaking of translational invariance
  - Twisting procedure, Dirac-Kähler fermions, simulate twisted theory
  - Orbifolding procedure; produces similar action
- This is, however, not a technical talk about how to formulate SUSY on the lattice

- Difficult to implement (SUSY algebra is an extension of Poincaré algebra)
- Technique used here is to preserve only one of the supercharges, and recover the rest in the continuum limit
  - Anticommutator of two supercharges generates spacetime translations
  - Preserving only one supercharge sidesteps this issue
  - Resulting algebra not broken by the discretisation
- Corresponds to a topologically twisted form of the original theory
- Restriction that we work with a target theory having  $2^D$  supercharges
- This formulation of  $\mathcal{N} = 4$  SYM on the lattice was examined in 1209.5285
- Dirac-Kähler fermion action that one obtains is similar to the standard staggered action (in free field theory at least)
- We vary two parameters, the 't Hooft Coupling  $\lambda$  and a mass parameter  $\mu_{\rm L}$  to control fluctuations (take  $\mu_{\rm L} \rightarrow 0$  later)

- 1. Double-check: does this theory have a sign problem?
  - Properties of the Pfaffian we know it is 'small enough', but...
  - Can we infer what will happen for larger volumes?
- 2. What does the eigenspectrum look like?
  - Zero modes, trace modes
  - Vary 't Hooft coupling  $\lambda$  and breaking parameter  $\mu_{\rm L}$
- 3. Can we measure the mass anomalous dimension?
  - Scaling of the individual eigenvalues with *L*
  - Crudely fitting to the eigenmode density 1204.4432

- Krylov subspace methods standard way to calculate N extremal eigenvalues of  $M\times M$  matrix,  $M\gg N$
- The Arnoldi algorithm depends on the factorisation

$$AV = VH + fe^{\mathrm{T}}; \quad V^{\dagger}f = 0$$

where A is our operator, V is an  $M \times N$  matrix of Ritz values and H is a Hessenberg matrix; f is a M-component vector

- Lanczos: A is Hermitian, H is tridiagonal
- Given the factorisation, the eigenvalues of *H* are calculated; these Ritz values approximate some eigenvalues of *A*
- Choose the 'best' eigenvalues in H, throw away the rest, repeat
- How reliable is the algorithm?
  - Difficult to define convergence for non-Hermitian operators
  - Gershgorin circle theorem underpins Hermitian results theoretically

## **Technical details**

- The simulation code is not (yet) parallelised (coming soon!) which restricts the volumes we can reach
- There is support for GPUs in the conjugate gradient algorithm but we instead make use of grid resources
  - Problem trivially parallelises; not time-critical
  - Therefore use FGI (Finnish Grid Infrastructure) rather than a traditional cluster
- Limited volumes mean we can get away with rudimentary eigenvalue calculations
  - We use ARPACK for the eigenvalue calculations<sup>1</sup>
  - In general, calculate 200 smallest eigenvalues, taking about 2 hours

<sup>&</sup>lt;sup>1</sup>See Joni Suorsa's talk, parallel D (at 15:00, i.e. next talk) for a fully parallel, GPUaccelerated non-Hermitian eigenvalue calculation

# **Briefly: measuring the Pfaffian**

- We cannot take for granted that the theory does not have a sign problem!
- Can measure exactly in small volumes (see 1209.5285)



apbc, 3<sup>4</sup>, 500 configurations, 1 configuration in red

- Looks nice, but phase only measurable if we know *full* eigenspectrum?
- Any structure at extremal eigenvalues that tells us about the sign, that we could examine at larger volumes?



No helpful extremal structure, but at small volumes, the phase is unimportant.

# Eigenvalues: what do we see?



- $U(2) \rightarrow 2 \times 2 \times 16 = 48$  total would-be zero (trace) modes (U(3) theory yields 144 such modes)
- We therefore discard these modes when carrying out further analysis

### Eigenspectra



Scaling with L



- Only observable in CFTs
- Important for phenomenology can we reproduce the walking by perturbing the theory?
- Comparisons with continuum predictions
- Dependence of  $\gamma_*$  on  $\lambda$ ?

- Fit  $\langle \lambda_n(L) \rangle$  to  $C_n L^{-y_n}$ , with jackknifed errors
- Distinct change in behaviour at  $\lambda_{65}$

|          | $\lambda = 0.5$     |                     | $\lambda = 1.0$     |                     |
|----------|---------------------|---------------------|---------------------|---------------------|
| $\mid n$ | $\mu_{\rm L} = 0.5$ | $\mu_{\rm L} = 1.0$ | $\mu_{\rm L} = 0.5$ | $\mu_{\rm L} = 1.0$ |
| 9        | $3.97 \pm 0.02$     | $4.03 \pm 0.01$     | $3.94 \pm 0.14$     | $4.09 \pm 0.03$     |
| 17       | $1.57\pm0.01$       | $1.83 \pm 0.03$     | $1.75 \pm 0.52$     | $1.76 \pm 0.24$     |
| 25       | $1.64 \pm 0.02$     | $1.86\pm0.03$       | $1.83 \pm 0.46$     | $1.84 \pm 0.21$     |
| 33       | $2.33 \pm 0.15$     | $2.17 \pm 0.04$     | $2.29 \pm 0.32$     | $2.20 \pm 0.06$     |
| 41       | $2.41 \pm 0.20$     | $2.25\pm0.03$       | $2.36 \pm 0.42$     | $2.29\pm0.07$       |
| 49       | $2.27\pm0.13$       | $2.16 \pm 0.06$     | $2.21 \pm 0.21$     | $2.19 \pm 0.02$     |
| 57       | $2.18\pm0.11$       | $2.14 \pm 0.05$     | $2.13 \pm 0.16$     | $2.13 \pm 0.02$     |
| 65       | $1.74 \pm 0.04$     | $1.74 \pm 0.02$     | $1.82 \pm 0.18$     | $1.70\pm0.01$       |
| 73       | $1.75 \pm 0.04$     | $1.74\pm0.03$       | $1.84 \pm 0.15$     | $1.69\pm0.02$       |
| 81       | $1.75\pm0.03$       | $1.74 \pm 0.03$     | $1.83 \pm 0.12$     | $1.69\pm0.03$       |

• Working with the ansatz ...

$$a^{-4}\bar{\nu}(\Omega) \approx a^{-4}\bar{\nu}_0 + A\left[(a\Omega)^2 - (am)^2\right]^{2/(1+\gamma_*)}$$

• ... where  $\bar{\nu}(\Omega)$  is the integrated spectral density ...

$$\bar{\nu}(\Omega) = 2 \int_0^{\sqrt{\Omega^2 - m^2}} \rho(\omega) \, d\omega; \qquad \rho(\omega) = \lim_{V \to \infty} \frac{1}{V} \sum_k \langle \delta(\omega - \omega_k) \rangle$$

- ... we optimistically fit our largest lattice data (L = 8 albeit 'staggered') to the ansatz and see if anything meaningful results
- Discard first 64 eigenvalues (zero modes, trace, constant)
- The term  $a^{-4}\bar{\nu}_0$  is (therefore) consistent with zero in all our fits
- $\gamma_*$  can also be obtained by fitting to our data for  $\langle \lambda_n(L) \rangle$

# **Eigenmode density fitting – results**

- 1. Fit to all possible ranges
- 2. Find the fitting range which yields  $\chi^2$ /dof closest to unity
- 3. Examine the effect on  $\gamma_*$  of varying the lower and upper bounds
- 4. If the results lie on a 'plateau', we use that value of  $\gamma_*$



• For  $\lambda = 0.5$ ,  $\mu_{\rm L} = 0.5$ , we get  $\gamma_* pprox 0.07$ 

• ... which is consistent with fitting to  $\langle \lambda_{65}(L) \rangle$ , which yields  $\gamma_* = 0.08 \pm 0.01$ 

### Conclusions

- In this talk we have looked briefly at
  - The Pfaffian
  - Basic properties of the eigenspectrum; scaling with *L*
  - Fitting the spectral density
- As far as we can tell the phase of the Pfaffian is close to zero...
- ... unfortunately, to say for sure, we would need to measure it exactly (hard in large volumes)
- We see zero modes, trace modes (that would disappear in continuum) and then the actual physics
- We have (optimistically) attempted to measure the anomalous mass dimension by fitting the spectral density
  - Although the volume is still relatively small
  - And our understanding of the trace modes is still very rudimentary
  - typical values are around  $\gamma_* \approx 0.1$ .

- Parallelised code
  - We have reached the limit of what can be done with single-core CPU code, even with the trivial parallelism used here (roughly 10k hours per parameter choice at L = 8, total use > 100k hours)
  - Larger volumes
  - Better performance without needing GPU acceleration?
- Better control of fits to spectral density
- Stronger coupling
  - Anomalous dimensions seem to be still quite small for  $\lambda = 1$
  - Results not of sufficiently high quality to draw conclusions for  $\lambda = 2$