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Introduction

• N = 4 SYM is of great theoretical interest

• Very elegant theory; maximal supersymmetry

• AdS/CFT correspondence

• BSM physics, phenomenology

• Connections to string theory

• Heavily studied analytically, simulations are much more recent

• Putting supersymmetry on the lattice is a fascinating problem

• Need to find a way to deal with breaking of translational invariance

• Twisting procedure, Dirac-Kähler fermions, simulate twisted theory

• Orbifolding procedure; produces similar action

• This is, however, not a technical talk about how to formulate SUSY on the

lattice



SYM on the lattice 0903.4881, 1110.5983

• Difficult to implement (SUSY algebra is an extension of Poincaré algebra)

• Technique used here is to preserve only one of the supercharges, and

recover the rest in the continuum limit

• Anticommutator of two supercharges generates spacetime translations

• Preserving only one supercharge sidesteps this issue

• Resulting algebra not broken by the discretisation

• Corresponds to a topologically twisted form of the original theory

• Restriction that we work with a target theory having 2D supercharges

• This formulation of N = 4 SYM on the lattice was examined in 1209.5285

• Dirac-Kähler fermion action that one obtains is similar to the standard

staggered action (in free field theory at least)

• We vary two parameters, the ’t Hooft Coupling λ and a mass parameter

µL to control fluctuations (take µL → 0 later)



Questions

1. Double-check: does this theory have a sign problem?

• Properties of the Pfaffian we know it is ‘small enough’, but. . .

• Can we infer what will happen for larger volumes?

2. What does the eigenspectrum look like?

• Zero modes, trace modes

• Vary ’t Hooft coupling λ and breaking parameter µL

3. Can we measure the mass anomalous dimension?

• Scaling of the individual eigenvalues with L
• Crudely fitting to the eigenmode density 1204.4432



Reminder – the Arnoldi/Lanczos algorithm

• Krylov subspace methods – standard way to calculate N extremal

eigenvalues of M ×M matrix, M ≫ N

• The Arnoldi algorithm depends on the factorisation

AV = V H + feT; V †f = 0

where A is our operator, V is an M ×N matrix of Ritz values and H is a

Hessenberg matrix; f is a M -component vector

• Lanczos: A is Hermitian, H is tridiagonal

• Given the factorisation, the eigenvalues of H are calculated; these Ritz

values approximate some eigenvalues of A

• Choose the ‘best’ eigenvalues in H , throw away the rest, repeat

• How reliable is the algorithm?

• Difficult to define convergence for non-Hermitian operators

• Gershgorin circle theorem underpins Hermitian results theoretically



Technical details

• The simulation code is not (yet) parallelised (coming soon!) which restricts

the volumes we can reach

• There is support for GPUs in the conjugate gradient algorithm but we

instead make use of grid resources

• Problem trivially parallelises; not time-critical

• Therefore use FGI (Finnish Grid Infrastructure) rather than a traditional

cluster

• Limited volumes mean we can get away with rudimentary eigenvalue

calculations

• We use ARPACK for the eigenvalue calculations1

• In general, calculate 200 smallest eigenvalues, taking about 2 hours

1See Joni Suorsa’s talk, parallel D (at 15:00, i.e. next talk) for a fully parallel, GPU-

accelerated non-Hermitian eigenvalue calculation



Briefly: measuring the Pfaffian

• We cannot take for granted that the theory does not have a sign problem!

• Can measure exactly in small volumes (see 1209.5285)

apbc, 34, 500 configurations, 1 configuration in red

• Looks nice, but phase only measurable if we know full eigenspectrum?

• Any structure at extremal eigenvalues that tells us about the sign, that we

could examine at larger volumes?



Pfaffian analysis
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No helpful extremal structure, but at small volumes, the phase is unimportant.



Eigenvalues: what do we see?
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• U(2) → 2× 2× 16 = 48 total would-be zero (trace) modes (U(3) theory

yields 144 such modes)

• We therefore discard these modes when carrying out further analysis



Eigenspectra
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Scaling with L

λ13 (scales ∼ L−4):

1 10
L

0.0001

0.001

0.01

0.1

<λ
13

>

λ=0.5 µ
L
=0.5

λ=0.5 µ
L
=1.0

λ=1.0 µ
L
=0.5

λ=1.0 µ
L
=1.0

λ=2.0 µ
L
=0.5

λ=2.0 µ
L
=1.0

λ65:

1 10
L

0.01

0.1

1

<λ
65

>

λ=0.5 µ
L
=0.5

λ=0.5 µ
L
=1.0

λ=1.0 µ
L
=0.5

λ=1.0 µ
L
=1.0

λ=2.0 µ
L
=0.5

λ=2.0 µ
L
=1.0

0 2 4 6 8 10
L

0

5

10

15

L
2

λ 65

λ=0.5 µ
L
=0.5

λ=0.5 µ
L
=1.0

λ=1.0 µ
L
=0.5

λ=1.0 µ
L
=1.0

λ=2.0 µ
L
=0.5

λ=2.0 µ
L
=1.0



Mass anomalous dimension

• Only observable in CFTs

• Important for phenomenology – can we reproduce the walking by

perturbing the theory?

• Comparisons with continuum predictions

• Dependence of γ∗ on λ?



Finite volume scaling of eigenvalues 0910.3072

• Fit 〈λn(L)〉 to CnL
−yn , with jackknifed errors

• Distinct change in behaviour at λ65

λ = 0.5 λ = 1.0
n µL = 0.5 µL = 1.0 µL = 0.5 µL = 1.0

9 3.97± 0.02 4.03± 0.01 3.94± 0.14 4.09± 0.03

17 1.57± 0.01 1.83± 0.03 1.75± 0.52 1.76± 0.24
25 1.64± 0.02 1.86± 0.03 1.83± 0.46 1.84± 0.21

33 2.33± 0.15 2.17± 0.04 2.29± 0.32 2.20± 0.06
41 2.41± 0.20 2.25± 0.03 2.36± 0.42 2.29± 0.07

49 2.27± 0.13 2.16± 0.06 2.21± 0.21 2.19± 0.02
57 2.18± 0.11 2.14± 0.05 2.13± 0.16 2.13± 0.02

65 1.74± 0.04 1.74± 0.02 1.82± 0.18 1.70± 0.01
73 1.75± 0.04 1.74± 0.03 1.84± 0.15 1.69± 0.02
81 1.75± 0.03 1.74± 0.03 1.83± 0.12 1.69± 0.03



Mass anomalous dimension from eigenmode density

• Working with the ansatz . . .

a−4ν̄(Ω) ≈ a−4ν̄0 +A
[

(aΩ)2 − (am)2
]2/(1+γ∗)

• . . . where ν̄(Ω) is the integrated spectral density . . .

ν̄(Ω) = 2

∫

√
Ω2−m2

0
ρ(ω) dω; ρ(ω) = lim

V→∞

1

V

∑

k

〈δ(ω − ωk)

• . . . we optimistically fit our largest lattice data (L = 8 – albeit ‘staggered’)

to the ansatz and see if anything meaningful results

• Discard first 64 eigenvalues (zero modes, trace, constant)

• The term a−4ν̄0 is (therefore) consistent with zero in all our fits

• γ∗ can also be obtained by fitting to our data for 〈λn(L)〉



Eigenmode density fitting – results

1. Fit to all possible ranges

2. Find the fitting range which yields χ2/dof closest to unity

3. Examine the effect on γ∗ of varying the lower and upper bounds

4. If the results lie on a ‘plateau’, we use that value of γ∗

Example – λ = 0.5, µL = 0.5:
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• For λ = 0.5, µL = 0.5, we get γ∗ ≈ 0.07
• . . . which is consistent with fitting to 〈λ65(L)〉, which yields

γ∗ = 0.08± 0.01



Conclusions

• In this talk we have looked briefly at

• The Pfaffian

• Basic properties of the eigenspectrum; scaling with L
• Fitting the spectral density

• As far as we can tell the phase of the Pfaffian is close to zero. . .

• . . . unfortunately, to say for sure, we would need to measure it exactly

(hard in large volumes)

• We see zero modes, trace modes (that would disappear in continuum) and

then the actual physics

• We have (optimistically) attempted to measure the anomalous mass

dimension by fitting the spectral density

• Although the volume is still relatively small

• And our understanding of the trace modes is still very rudimentary

– typical values are around γ∗ ≈ 0.1.



Still to do

• Parallelised code

• We have reached the limit of what can be done with single-core CPU

code, even with the trivial parallelism used here (roughly 10k hours per

parameter choice at L = 8, total use > 100k hours)

• Larger volumes

• Better performance without needing GPU acceleration?

• Better control of fits to spectral density

• Stronger coupling

• Anomalous dimensions seem to be still quite small for λ = 1
• Results not of sufficiently high quality to draw conclusions for λ = 2
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