Introduction

Conclusions

SU(3) flavour symmetry breaking and charmed states

R. Horsley, J. Najjar, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L. Rakow, G. Schierholz, A. Schiller, H. Stüben and J. M. Zanotti

- QCDSF-UKQCD Collaboration -

Edinburgh - Regensburg - RIKEN (Kobe) - Leipzig - FZ (Jülich) - Liverpool - DESY - Hamburg - Adelaide

[Lattice 2013, Mainz, Germany]

Introduction	Background	PQ expansions	Charm quark mass	Open Charm mases	Conclusions

QCDSF related talks with $\mathbf{2}+\mathbf{1}$ flavours:

- James Zanotti SU(3) flavour breaking and baryon structure
- Ashley Cooke
 Flavour Symmetry Breaking in Octet Hyperon Matrix Elements
- Paul Rakow Parallels 10C (Hadron Spectroscopy and Interactions) The Hadronic Decays of Decuplet Baryons
 - Holger Perlt Parallels 5C (Standard Model Parameters and Renormalization)
 Perturbatively improving renormalization constants
 - Gerrit Schierholz

Dynamical 2+1 flavor QCD + QED

Poster

Parallels 8B (Hadron Structure)

Poster

Introduction	Background	PQ expansions	Charm quark mass	Open Charm mases	Conclusions

Introduction

- Background:
 - Given 2+1 simulations (at quark masses larger than physical quark masses), how can we usefully approach the physical point?
 - Possibility: SU(3) flavour expansion about flavour symmetric line
 - Mass 'fan' plots
- Extend expansion to PQ quark masses (ie valence quarks \neq sea quarks)
- (quenched) charm quark
- Open charm masses
- Conclusions

QCDSF strategy: extrapolate from a point on the $SU(3)_F$ flavour symmetry line to the physical point

$$(m_0, m_0) \longrightarrow (m_I^*, m_s^*)$$

Choice here: keep the singlet quark mass \overline{m} constant

$$\overline{m}=m_0=\frac{1}{3}\left(2m_l+m_s\right)$$

Introduction	Background	PQ expansions	Charm quark mass	Open Charm mases	Conclusions
QCDS	F strategy			[arXiv:11	02.5300]

- develop SU(3) flavour symmetry breaking expansion for hadron masses
- expansion in:

SU(3) flavour symmetric point $\delta m_q = 0$

$$\delta m_q = m_q - \overline{m}, \quad \overline{m} = \frac{1}{3}(m_u + m_d + m_s) = m_0$$

- expansion coefficients are functions of \overline{m}
- trivial constraint

$$\delta m_u + \delta m_d + \delta m_s = 0$$

• path called 'unitary line' as expand in both sea and valence quarks

 $[a, b = l, s \text{ (when no } \Lambda^0 - \Sigma^0 \text{ mixing)}]$

K⁰(d3) K^{*}(u3)

SU(3) flavour symmetry breaking expansions

+ . . .

• octet pseudoscalar mesons:

$$\begin{aligned} M^{2}(a\overline{b}) &= M_{0\pi}^{2} + \alpha(\delta m_{a} + \delta m_{b}) \\ &+ \beta_{0} \frac{1}{6} (\delta m_{u}^{2} + \delta m_{d}^{2} + \delta m_{s}^{2}) \\ &+ \beta_{1}(\delta m_{a}^{2} + \delta m_{b}^{2}) + \beta_{2}(\delta m_{a} - \delta m_{b})^{2} \\ &+ \dots \qquad [a, b = u, d, s \text{ (outer ring)}] \end{aligned}$$

• octet baryons:

$$\begin{split} M^{N\,2}(aab) &= M_{0N}^2 + A_1(2\delta m_a + \delta m_b) + A_2(\delta m_b - \delta m_a) \\ &+ B_0 \frac{1}{6} (\delta m_u^2 + \delta m_d^2 + \delta m_s^2) \\ &+ B_1(2\delta m_a^2 + \delta m_b^2) + B_2(\delta m_b^2 - \delta m_a^2) + B_3(\delta m_b - \delta m_a)^2 \\ &+ \dots \qquad [a, b = u, d, s \text{ (outer ring)}] \\ M^{\Lambda\,2}(aab) &= M_{0\Lambda}^2 + A_1(2\delta m_a + \delta m_b) - A_2(\delta m_b - \delta m_a) \\ &+ B_0 \delta m_l^2 \\ &+ B_1(2\delta m_a^2 + \delta m_b^2) - B_2(\delta m_b^2 - \delta m_a^2) + B_4(\delta m_b - \delta m_a)^2 \end{split}$$

Introduction	Background	PQ expansions	Charm quark mass	Open Charm mases	Conclusions

Main observation:

- Provided \overline{m} kept constant, then expansion coefficients remain unaltered whether
 - 1 + 1 + 1
 - 2+1
- Opens possibility of determining quantities that depend on 1+1+1 flavours (ie pure QCD isospin breaking effects) from just 2+1 simulations

Defining the scale – using singlet quantities

• pseudoscalar mesons (centre of mass):

$$\begin{aligned} \chi^2_{\pi} &= \frac{1}{6}(M^2_{K^+} + M^2_{K^0} + M^2_{\pi^+} + M^2_{\pi^-} + M^2_{K^0} + M^2_{K^-}) = (0.4116 \, \text{GeV})^2 \\ &= M^2_{0\pi^+} \left(\frac{1}{6}\beta_0 + \frac{2}{3}\beta_1 + \beta_2\right)(\delta m^2_u + \delta m^2_d + \delta m^2_s) = M^2_{0\pi^+} + \mathcal{O}(\delta m^2_q) \end{aligned}$$

• octet baryons (centre of mass):

$$\begin{split} X_N^2 &= \frac{1}{6}(M_p^2 + M_n^2 + M_{\Sigma^+}^2 + M_{\Sigma^-}^2 + M_{\Xi^0}^2 + M_{\Xi^-}^2) = (1.160 \text{ GeV})^2 \\ &= M_0^2 + \frac{1}{6}(B_0 + B_1 + B_3)(\delta m_u^2 + \delta m_d^2 + \delta m_s^2) = M_0^2 + O(\delta m_q^2) \end{split}$$

stable under strong ints.

[⇒⇒ scale determination]

- gluonic quantities: X²_{t0} = 1/t₀,...
 other possibilities:
 - $X_{\Lambda}^2 = \frac{1}{2} (M_{\Sigma}^2 + M_{\Lambda}^2), X_{\rho}^2 = \frac{1}{6} (M_{K^{*+}}^2 + M_{K^{*0}}^2 + M_{\rho^+}^2 + M_{\rho^-}^2 + M_{\overline{K^{*0}}}^2 + M_{K^{*-}}^2), \dots$
- all singlet quantities

$$X_S^2 = \# + \#(\delta m_q^2)$$

(almost) constant

• form dimensionless ratios (within a multiplet):

$$ilde{M}^2 \equiv rac{M^2}{X_S^2} \,, \quad S = \pi, N, \dots \,, \qquad ilde{A}_i \equiv rac{A_i}{M_0^2} \,, \dots \quad ext{in expansions}$$

Introduction	Background	PQ expansions	Charm quark mass	Open Charm mases	Conclusions
Lattic	e				

- O(a) NP improved clover action
 - tree level Symanzik glue
 - mildy stout smeared 2 + 1 clover fermion

•
$$\beta = 5.50 \, [5.80], \, 32^3 \times 64$$

$$m_q = rac{1}{2} \left(rac{1}{\kappa_q} - rac{1}{\kappa_{0c}}
ight)$$

$\kappa_{\rm 0c}$ is chiral limit along symmetric line

giving

$$m_0 = \frac{1}{2} \left(\frac{1}{\kappa_0} - \frac{1}{\kappa_{0c}} \right) = \overline{m} = \frac{1}{3} (2m_l + m_s) = \frac{1}{2} \left(\frac{2}{\kappa_l} + \frac{1}{\kappa_s} - \frac{1}{\kappa_{0c}} \right)$$

So $1/\kappa_{0c}$ cancels: given κ_0 and κ_l gives κ_s

$$\delta m_q = m_q - m_0 = \frac{1}{2} \left(\frac{1}{\kappa_q} - \frac{1}{\kappa_0} \right)$$

Charm quark mas

'Fan' plot – no visible curvature

- 2+1, q = l, s, $\delta m_u = \delta m_d = \delta m_l$ $\delta m_s = -2\delta m_l$
- O(a)-improved clover fermions; 32³ × 64 lattices [fitted, filled pts]
- $\delta m_l = m_l \overline{m}$
- m = const.
 [to find need to tune]
- $M_N = M^N(III''),$ $M_{\Sigma} = M^N(IIs),$ $M_{\Xi} = M^N(ssI),$ $M_{N_s} = M^N(sss'')$ [PQ]

Use the pseudoscalar fan plot to determine the physical quark mass: δm_l^*

Scale determination

 as constant down to physical point use X_N^{exp} to determine scale

$$a_S^2 = \frac{(aX_S)^2}{X_S^{\exp 2}}$$

- Goal: vary m₀ when the a_S cross (ie independent of S) gives common scale a
- at this 'magic' point find

а	\approx	0.074 fm
exp	\approx	0.153 fm

 $w_0^{\text{exp}} \approx 0.179 \, \text{fm}$

ntroduction	Background	PQ expansions	Charm quark mass	Open Charm mases	Conclusions

Reaching the charm quark mass range

- unitary range rather small so introduce PQ partially quenching (ie valence quark masses ≠ sea quark masses) and NNLO
- eg pseudoscalar meson octet

$$M^{2}(a\overline{b}) = M^{2}_{0\pi} + \alpha(\delta\mu_{a} + \delta\mu_{b}) + \beta_{0}\frac{1}{6}(\delta m^{2}_{u} + \delta m^{2}_{d} + \delta m^{2}_{s}) + \beta_{1}(\delta\mu^{2}_{a} + \delta\mu^{2}_{b}) + \beta_{2}(\delta\mu_{a} - \delta\mu_{b})^{2} + \gamma_{0}\delta m_{u}\delta m_{d}\delta m_{s} + \gamma_{1}(\delta\mu_{a} + \delta\mu_{b})(\delta m^{2}_{u} + \delta m^{2}_{d} + \delta m^{2}_{s}) + \gamma_{2}(\delta\mu_{a} + \delta\mu_{b})^{3} + \gamma_{3}(\delta\mu_{a} + \delta\mu_{b})(\delta\mu_{a} - \delta\mu_{b})^{2}$$

• $\delta \mu_q = \mu_q - \overline{m}$ $q \in \{a, b, \ldots\}$; valence quarks of arbitrary mass, μ_q

- expansion coefficients: $M^2_{0\pi}(\overline{m}), \alpha(\overline{m}), \ldots$
- mixed sea/valence mass terms
- unitary limit: $\delta \mu_q \rightarrow \delta m_q$

2+1 joint fits

- unitary line data $[\mu_q
 ightarrow m_q]$
- no visible curvature

- PQ data $[\delta m_l = 0]$
- illustration, to avoid 3-dim plot a' distinct quark but same mass as a

$$\tilde{\mathsf{M}}^{2}(\mathsf{a}\mathsf{a}') = 1 + 2\delta\mu_{\mathsf{a}}\tilde{\alpha}_{1} + 2\tilde{\beta}_{1}\delta\mu_{\mathsf{a}}^{2} + 8\tilde{\gamma}_{2}\delta\mu_{\mathsf{a}}^{3}$$

Very different x-scales involved

Introduction

kground

PQ expansions

Charm quark mas

Octet baryon expansion coefficients

$$\begin{split} M^{N\,2}(aab) &= M_{0N}^2 + A_1(2\delta\mu_a + \delta\mu_b) + A_2(\delta\mu_b - \delta\mu_a) \\ &+ B_0 \frac{1}{6} (\delta m_u^2 + \delta m_d^2 + \delta m_s^2) + B_1(2\delta\mu_a^2 + \delta\mu_b^2) + B_2(\delta\mu_b^2 - \delta\mu_a^2) + B_3(\delta\mu_b - \delta\mu_a)^2 \\ &+ C_0 \delta m_u \delta m_d \delta m_s + [C_1(2\delta\mu_a + \delta\mu_b) + C_2(\delta\mu_b - \delta\mu_a)](\delta m_u^2 + \delta m_d^2 + \delta m_s^2) \\ &+ C_3(\delta\mu_a + \delta\mu_b)^3 + C_4(\delta\mu_a + \delta\mu_b)^2(\delta\mu_a - \delta\mu_b) \\ &+ C_5(\delta\mu_a + \delta\mu_b)(\delta\mu_a - \delta\mu_b)^2 + C_6(\delta\mu_a - \delta\mu_b)^3 \end{split}$$

$$\begin{split} M^{\Lambda\,2}(aa'b) &= & M_{0\Lambda}^2 + A_1(2\delta\mu_a + \delta\mu_b) - A_2(\delta\mu_b - \delta\mu_a) \\ &+ B_0 \frac{1}{6} (\delta m_u^2 + \delta m_d^2 + \delta m_s^2) + B_1(2\delta\mu_a^2 + \delta\mu_b^2) - B_2(\delta\mu_b^2 - \delta\mu_a^2) + B_4(\delta\mu_b - \delta\mu_a)^2 \\ &+ C_0 \delta m_u \delta m_d \delta m_s + [C_1(2\delta\mu_a + \delta\mu_b) - C_2(\delta\mu_b - \delta\mu_a)](\delta m_u^2 + \delta m_d^2 + \delta m_s^2) \\ &+ C_3(\delta\mu_a + \delta\mu_b)^3 + (C_4 - 2C_3)(\delta\mu_a + \delta\mu_b)^2 (\delta\mu_a - \delta\mu_b) \\ &+ C_7(\delta\mu_a + \delta\mu_b)(\delta\mu_a - \delta\mu_b)^2 + C_8(\delta\mu_a - \delta\mu_b)^3 \end{split}$$

• similar procedure

2+1 joint fits

- unitary line data $[\mu_q
 ightarrow m_q]$
- no visible curvature

- PQ data (both N and A) $[\delta m_l = 0]$
- illustration, to avoid 3-dim plot a' distinct quark but same mass as a

 $\tilde{\textit{M}}^2(\textit{aaa}'') = 1 + 3\tilde{\textit{A}}_1\delta\mu_a + 3\tilde{\textit{B}}_1\delta\mu_a^2 + 8\tilde{\textit{C}}_3\delta\mu_a^3$

Very different x-scales involved

Introduction	Background	PQ expansions	Charm quark mass	Open Charm mases	Conclusions

Method

- Use PQ data to determine expansion coefficients
 - α , β , γ pseudoscalar octet
 - A, B, C baryon octet
- Determine physical quark masses

 δm_u^* , δm_d^* , δm_s^* , $\delta \mu_c^*$

by fitting to (eg)

 $M^{\exp}_{\pi^+}(u\overline{d}), \quad M^{\exp}_{K^+}(u\overline{s}), \quad M^{\exp}_{\eta_c}(c\overline{c})$

[together with κ_0 , so 4 inputs]

Open Charm masses

Can describe states with same wavefunction (and hence expansion) as previously used

• pseudoscalar mesons

$$D^0(c\overline{u}), \quad D^+(c\overline{d}), \quad D^+_s(c\overline{s})$$

which all have the wavefunction

$$\mathcal{M} = \overline{q}\gamma_5 c$$
 $q = u, d, s$

- baryons
 - single open charm (C = 1) states

$$\Sigma_c^{++}(\mathit{uuc})\,,\quad \Sigma_c^0(\mathit{ddc})\,,\quad \Omega_c^0(\mathit{ssc})$$

which all have the wavefunction

$$\mathcal{B} = \epsilon (q^T C \gamma_5 c) q \qquad q = u, d, s$$

[also if $m_u = m_d = m_l$, then in addition as no mixing $\Sigma_c^+(ll'c) = \Sigma_c^0(ll'c)$ and $\Lambda_c^+(ll'c)$]

• double open charm (C = 2) states

$$\Xi_{cc}^{++}(ccu)$$
 $\Xi_{cc}^{+}(ccd)$ $\Omega_{cc}^{+}(ccs)$

which all have the wavefunction

$$\mathcal{B} = \epsilon (c^T C \gamma_5 q) c$$
 $q = u, d, s$

oduction	U(4)	20-pl	ickgroun <mark>et</mark>	ıd	PQ expansion	ns Charm quark mass Open Charm mases Co	oncl
	С	S	Ι	I_3	baryon	wavefunction	
	0	0	$\frac{1}{2}$	$+\frac{1}{2}$	p	$\epsilon(u^{T}C\gamma_{5}d)u$	
	0	0	1/2	$-\frac{1}{2}$	п	$\epsilon(d^T C \gamma_5 u) d$	
	0	1	ī	$+\overline{1}$	Σ^+	$\epsilon(u^T C \gamma_5 s) u$	
	0	1	1	0	Σ^0	$\frac{1}{\sqrt{2}}\epsilon[(u^T C\gamma_5 s)d + (d^T C\gamma_5 s)u]$	
	0	1	1	-1	Σ^{-}	$\epsilon(d^T C \gamma_5 s) d$	
	0	2	$\frac{1}{2}$	$+\frac{1}{2}$	Ξ0	$\epsilon(s^T C \gamma_5 u) s$	
	0	2	$\frac{1}{2}$	$-\frac{1}{2}$	Ξ-	$\epsilon(s^T C \gamma_5 d) s$	
	0	1	0	0	Λ^0	$\frac{1}{\sqrt{6}}\epsilon[2(u^{T}C\gamma_{5}d)s+(u^{T}C\gamma_{5}s)d-(d^{T}C\gamma_{5}s)u]$	
	1	0	1	+1	Σ_c^{++}	$\epsilon(u^{T}C\gamma_{5}c)u$	
	1	0	1	0	Σ_c^+	$\frac{1}{\sqrt{2}}\epsilon[(u^T C \gamma_5 c)d + (d^T C \gamma_5 c)u]$	
	1	0	1	-1	Σ_c^0	$\epsilon(d^T C \gamma_5 c) d$	
	1	1	$\frac{1}{2}$	$+\frac{1}{2}$	$\Xi_c^{\prime+}$	$\frac{1}{\sqrt{2}}\epsilon[(s^{T}C\gamma_{5}c)u + (u^{T}C\gamma_{5}c)s]$	
	1	1	$\frac{1}{2}$	$-\frac{1}{2}$	$\Xi_c^{\prime 0}$	$\frac{1}{\sqrt{2}} \epsilon[(s^T C \gamma_5 c)d + (d^T C \gamma_5 c)s]$	
	1	2	0	0	Ω_c^0	$\epsilon(s^T C \gamma_5 c) s$	
	1	0	0	0	Λ_c^+	$\frac{1}{\sqrt{6}}\epsilon[2(u^{T}C\gamma_{5}d)c+(u^{T}C\gamma_{5}c)d-(d^{T}C\gamma_{5}c)u]$	
	1	1	$\frac{1}{2}$	$+\frac{1}{2}$	Ξ_c^+	$\frac{1}{\sqrt{6}}\epsilon[2(s^{T}C\gamma_{5}u)c + (s^{T}C\gamma_{5}c)u - (u^{T}C\gamma_{5}c)s]$	
	1	1	$\frac{1}{2}$	$-\frac{1}{2}$	Ξ_c^0	$\frac{1}{\sqrt{6}}\epsilon[2(s^{T}C\gamma_{5}d)c+(s^{T}C\gamma_{5}c)d-(d^{T}C\gamma_{5}c)s]$	
	2	0	$\frac{1}{2}$	$+\frac{1}{2}$	Ξ_{cc}^{++}	$\epsilon(c^T C \gamma_5 u) c$	
	2	0	$\frac{1}{2}$	$+\frac{1}{2}$	Ξ_{cc}^+	$\epsilon(c^{T}C\gamma_{5}d)c$	
	2	1	Ō	Ō	Ω_{cc}^+	$\epsilon(c^T C \gamma_5 s) c$	

Charmed pseudoscalar mesons

- $D^0(c\overline{u}), D^+(c\overline{d}), D^+_s(c\overline{s}),$
- small lattice artifacts

• splittings: $D^+(c\overline{d}) - D^0(c\overline{u}),$ $D^+_s(c\overline{s}) - D^0(c\overline{u}),$ $D^+_s(c\overline{s}) - D^+(c\overline{d})$

Charmed C = 1 baryons

- $\Sigma_c^{++}(uuc)$, $\Sigma_c^0(ddc)$, $\Omega_c^0(ssc)$
- some lattice artifacts (?)

• splittings:
$$\begin{split} & \Sigma_c^0(ddc) - \Sigma_c^{++}(uuc), \\ & \Omega_c^0(ssc) - \Sigma_c^{++}(uuc), \\ & \Omega_c^0(ssc) - \Sigma_c^0(ddc) \end{split}$$

Charmed C = 2 baryons

- $\Xi_{cc}^{++}(ccu)$, $\Xi_{cc}^{+}(ccd)$, $\Omega_{cc}^{+}(ccs)$
- some lattice artifacts (?)
- [*] SELEX

• splittings: $\begin{aligned} & \Xi_{cc}^+(ccd) - \Xi_{cc}^{++}(ccu), \\ & \Omega_{cc}^+(ccs) - \Xi_{cc}^{++}(ccu), \\ & \Omega_{cc}^+(ccs) - \Xi_{cc}^+(ccd) \end{aligned}$ PQ expansions

Charm quark mas

Conclusions

- For *u*, *d*, *s* quarks, have developed a method to approach the physical point
- Precise *SU*(3) flavour symmetry breaking expansions nothing ad-hoc
- Extend expansions PQ (mass valence quarks \neq mass sea quarks) to
 - better determine expansion coefficients
 - determine c quark mass
- Applied method to determine some open charm states
- Future:
 - need to better check $O(a^2)$ effects
 - mixing: in a 2 + 1 world no Σ^0 Λ^0 mixing, but determined coefficients can be used to determine $\Sigma^0(uds)$ $\Lambda^0(uds)$ mixing

work in progress

generalise to eg Σ_c^+ - Λ_c^+ , Ξ_c^0 - $\Xi_c^{\prime 0}$ mixing

- baryon decuplet
- QED effects