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Roper Resonance

• Quark model: N = 2 radial excitation of the nucleon.
• Much lower in mass than simple quark model predictions.

• Experiment: Lighter than N = 1 radial excitation of the
nucleon, the negative parity S11(1535).

• “Exotic” in nature.
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Roper Resonance

• It has proven difficult to isolate this state on the lattice.
• Consider the nucleon interpolators,

χ1(x) = εabc(uTa(x) Cγ5 db(x)) uc(x) ,

χ2(x) = εabc(uTa(x) C db(x)) γ5 uc(x) .

• Historically thought Roper couples to χ2.

• We will see that this is wrong!
• Key to isolating this elusive state is an appropriate

variational basis.
• Phys.Lett. B707 (2012) 389-393, “Roper Resonance in 2+1

Flavor QCD”
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Variational Method

• Construct an n × n correlation matrix,

Gij(t , ~p) =
∑
~x

e−i~p.~x〈Ω|T{χi(x)χ̄j(0)}|Ω〉.

• Solve a generalised eigenproblem to find the linear
combination of interpolating fields,

φ̄α =
N∑

i=1

uαi χ̄i , φα =
N∑

i=1

vαi χi

such that the correlation matrix is diagonalised,

vαi Gij(t)u
β
j = δαβzαz̄βe−mαt .



Eigenstate-Projected Correlators

• The left and right vectors are used to define the
eigenstate-projected correlators

vαi G±
ij (t)uαj ≡ Gα

±(t).

• χ1 and χ2 give us two operators.
• Not able to access the Roper using these alone.

• Solution: Use different levels of gauge-invariant quark
smearing to expand the operator basis.

• PACS-CS 2+1 flavour ensembles, lightest mπ = 156 MeV.
• S. Aoki, et al., Phys. Rev. D79 (2009) 034503.

• 8× 8 correlation matrix analysis using χ1, χ2 with 4
different levels (n = 16,35,100,200) of smearing.

• RMS radii of 2.37, 3.50, 5.92 and 8.55 lattice units.



N+ spectrum



Eigenvector analysis



Eigenvector structure of the Roper

• χ1,n = 200 dominates (positive).
• Negative contribution from a varying

mix of:

• χ1,n = 100
• χ1,n = 35.

• Negligible contribution from χ1,n = 16
and all χ2 operators.
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Eigenvector analysis

• First positive-parity excited state couples strongly to χ1.

• Large smearing values are critical.
• χ2 coupling to the Roper is negligible.
• Transition from scattering state to resonance as quark

mass drops.
• At light quark mass the Roper mass is pushed up due to

finite volume effects.
• How can we learn more?

• Study multiple lattice volumes.

• Expensive.
• Look at the excited state structure.
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Wave function of the Roper

• We explore the structure of the nucleon excitations by
examining the Bethe-Salpeter amplitude.

• The baryon wave function is built by giving each quark field
in the annihilation operator a spatial dependence,

χ1(~x , ~y , ~z, ~w) = εabc ( uT
a (~x + ~y) Cγ5 db(~x + ~z) ) uc(~x + ~w).

• The creation operator remains local.
• The resulting construction is gauge-dependent.

• We choose to fix to Landau gauge.



Wave function of the Roper

• Non-local sink operator cannot be smeared.
• Construct states using right eigenvector uα only.

• Eigenvectors from 4× 4 CM analysis using χ1 only.
• The position of the u quarks is fixed and we measure the d

quark probability distribution at mπ = 156 MeV.



Ground state probability distribution



First excited state probability distribution



Quark Model comparison

• Compare to a non-relativistic constituent quark model.
• One-gluon-exchange motivated Coulomb + ramp potential.
• Spin dependence in R. K. Bhaduri, L. E. Cohler and Y.

Nogami, Phys. Rev. Lett. 44 (1980) 1369.
• The radial Schrodinger equation is solved with boundary

conditions relevant to the lattice data.
• The derivative of the wave function is set to vanish at a

distance Lx/2.
• Two parameter fit to the nucleon radial wave function

yields:
• String tension

√
σ = 400 MeV

• Constituent quark mass mq = 360 MeV

• These parameters are held fixed for the excited states.



Ground state comparison



First excited state comparison



Quark Model comparison

• Ground state QM agrees well (as expected).

• First excited state shows a node structure.

• Consistent with N = 2 radial excitation.
• QM predicts node position fairly well.
• QM disagrees near the boundary.

• Reveals why an overlap of two broad Gaussians with
opposite sign is needed to form the Roper.

• Finite volume effects?
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First excited state probability distribution



Quark Model comparison

• Wave function should be spherically symmetric.

• Outer shell of Roper wave function clearly reveals
distortion due to finite volume.

• Effective field theory arguments suggest the small volume
will drive up the energy.



Summary

• The variational method allows us to access a state that is
consistent with the Roper N(1440) with standard
three-quark interpolators.

• χ2 has negligible coupling to the Roper.
• Probing the Roper wave function reveals a nodal structure.
• Multiple χ1 operators at large smearings are critical to form

the correct nodal structure.
• Qualitative agreement with QM predictions for the Roper

radial wave function.
• Finite volume effects clearly evident in the Roper

probability distribution.
• Larger lattice volumes needed!



N = 3 excited state probability distribution



N = 3 excited state comparison
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