Investigation of the $U_A(1)$ in high temperature QCD on the lattice

Sayantan Sharma

Fakultät für Physik, Universität Bielefeld

1st, August, 2013

Work done in collaboration with,

Viktor Dick, Frithjof Karsch, Edwin Laermann & Swagato Mukherjee

Lattice 2013

ъ.

⊸∢ ≣ ≯

Introduction

• Pertubative RG studies on models with same symmetries as QCD: $N_f = 2$ chiral phase transition at $\mu = 0$ is second order if magnitude of $U_A(1)$ breaking is large.

[Pisarski & Wilczek, 84, Butti, Pelissetto & Vicari, 03]

• Important to get insight from first principles Lattice study.

[See plenary talk by Kalman Szabo]

Recent work for QCD with two light flavours and chiral fermions

[Cossu et. al, 2011,12; Chiu, Schroeder, Lattice, 13]

• Better understanding of $\mu = 0$ transition necessary for concluding about the existence of a critical point.

Motivation for our work

- In our world, $m_{u,d} << \Lambda_{QCD}$.
- 2 + 1-flavour QCD is sensitive to the O(4) scaling due to chiral symmetry of the two massless quarks. [Bielefeld-BNL collaboration, 09, H.-T Ding's Talk Lattice, 13]

- At present improved versions of staggered fermions used extensively for QCD thermodynamics. Continuum limits for *T_c*, χ₂ are in agreement.
- Highly improved staggered quarks(HISQ): minimal taste symmetry breaking.

-∢ ≣⇒

Technique used

- We investigate the $U_A(1)$ restoration in 2+1 flavour QCD configurations generated with HISQ fermions.
- Signatures of $U_A(1)$ restoration:
 - Gap in the low lying Dirac eigenspectrum
 - 2 Vanishing $\chi_{\pi} \chi_{\delta}$
- We use the overlap operator,

 $D_{ov} = M(1 + \gamma_5 \operatorname{sgn}(\gamma_5 D_W(-M)))$, $\operatorname{sgn}(A) = A/\sqrt{A}A$.

[Narayanan & Neuberger, 94, Neuberger, 98]

and look at the eigenvalue distribution of D_{ov} on the HISQ ensembles.

• D_{av} has an exact index theorem like in the continuum \Rightarrow the zero modes of D_{ov} related to topological structures of the underlying gauge field.

[Hasenfratz, Laliena & Niedermeyer, 98]

- Lattice size: $32^3 \times 8$
- Volume: $m_{\pi} L > 3$
- m_s physical and $m_s/m_l = 20 \Rightarrow m_\pi = 160$ MeV.
- Temperatures and configurations:

Т	# configurations	# eigenvalues/configuration
1.04 <i>T_c</i>	100	100
1.23 <i>T_c</i>	100	50
1.5 T _c	100	50

• Computations were done on the GPU cluster at Bielefeld University.

Implementing the overlap operator

- Lowest 20 eigenvalues of $\gamma_5 D_W$ computed with $\epsilon^2 < 10^{-16}$.
- For these lowest modes sign function was computed explicitly.
- For the higher modes, sign function approximated as a Zolotarev Rational Polynomial with 15 terms.
- The sign function is computed as precise as 10^{-10} .

Eigenvalue computation

- The Kalkreuter-Simma Ritz algorithm for eigenvalues of $D_{ov}^{\dagger} D_{ov}$.
- Convergence criterion: $\epsilon^2 < 10^{-8}$.

b 4 3 4 5

Introduction

4 Conclusions

⊸∢ ≣ ≯

Eigenvalue distribution of D_{ov}

Large no of zero modes, pile up of near zero modes.

э

Eigenvalue distribution of D_{ov}

Near zero mode contribution increases.

э

Eigenvalue distribution of D_{ov}

Near zero modes still contributing, no gap observed.

Distribution of topological charge

Q computed from zero modes of D_{ov} compared to from the $F\tilde{F}$ using HYP smearing on the same configurations [H. Ohno, U. M. Heller, F. Karsch and S. Mukherjee, 11] HYP results with higher statistics!

Occurrence of higher Q modes observed in both the methods.

Distribution of topological charge

Q computed from zero modes of D_{ov} compared to from the $F\tilde{F}$ using HYP smearing on the same configurations [H. Ohno, U. M. Heller, F. Karsch and S. Mukherjee, 11] HYP results with higher statistics!

Distribution of topological charge

Q computed from zero modes of D_{ov} compared to from the $F\tilde{F}$ using HYP smearing on the same configurations [H. Ohno, U. M. Heller, F. Karsch and S. Mukherjee, 11] HYP results with higher statistics!

Resultant values of χ_t larger than quenched result or smearing.

Measures of $U_A(1)$ breaking

• The quantity

$$\chi_{\pi} - \chi_{\delta} = \int d^4x \left[\langle i\pi^+(x)i\pi^-(0) \rangle - \langle \delta^+(x)\delta^-(x) \rangle \right]$$

is zero as $U_A(1)$ is restored.

• In terms of the eigenvalues [Edwards, Heller & Narayanan, 98],

$$\chi_{\pi} - \chi_{\delta} = \frac{4}{V} \sum_{\lambda > 0} \left\{ \frac{m^2 (4 - \lambda_i^2)^2}{\left[\lambda_i^2 (1 - m^2) + 4m^2\right]^2} + 2 \frac{\langle |Q| \rangle}{m^2 V} \right\}$$

• Contribution from non-zero modes \rightarrow nonzero even at 1.5 T_c .

→ Ξ →

Measures of $U_A(1)$ breaking

Localization properties of zero modes at $1.5 T_c$

Sayantan Sharma

Localization properties of zero modes at $1.5 T_c$

The nature of the near zero modes at $1.5 T_c$

The nature of the near zero modes at $1.5T_c$

The nature of the near zero modes at $1.5 T_c$

 Presence expected from dilute instanton gas approximation(DIGA)? Yes for pure SU(3) gauge theory [Edwards, Heller, Kiskis & Narayanan, 99]. Observed for QCD with domain wall fermions as well

[HotQCD collaboration, 12, Chris Schroeder, Lattice 2013].

If n=total no. of instantons+anti-instantons, according to DIGA

 $P(n, \langle n \rangle) = \langle n \rangle^n e^{-\langle n \rangle} / n!$

• For $Im(\lambda a) < 0.036$, the value of $\langle n \rangle = 4 = \langle n^2 \rangle$.

-∢ ≣⇒

Conclusions

- We have studied the topological structure of large volume HISQ fermion configurations used for QCD thermodynamics.
- All these configurations have topological structures even at 1.5 T_c .
- Significant presence of near zero modes and no gap even at this temperature⇒ U_A(1) is not restored.
- These structures are localized and consistent with a dilute gas of instantons and anti-instantons.
- The observable $\chi_{\pi} \chi_{\delta}$ is significantly different from zero at $1.5T_c$ further strengthens our claim.

Thank You.