Motivation
 Overlap details
 LCP
 Staggered details
 Results
 Conclusions

 00
 0
 0
 0
 0
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

QCD thermodynamics with dynamical overlap fermions

Szabolcs Borsányi¹ Ydalia Delgado² Stephan Dürr^{1,3} Zoltán Fodor^{1,3,4} Sándor D Katz⁴ Stefan Krieg^{1,3} Thomas Lippert^{1,3} Dániel Nógrádi⁴ Kálmán K Szabó⁵ **Bálint C Tóth¹**

¹Bergische Universität Wuppertal, Germany
 ²Karl-Franzens-Universität, Graz, Austria
 ³Forschungszentrum Jülich, Germany
 ⁴Eötvös Loránd University, Budapest, Hungary
 ⁵Universität Regensburg, Germany

August 1, 2013

Motivoti	ion & Aime	U	0	000	
Motivation	Overlap details	LCP	Staggered details	Results	Conclusions

Staggered fermions

- cheap, well studied
- continuum results at physical quark masses
- rooting: validity is still debated
- taste breaking \longrightarrow large $m_{\pi, rms}$

Wilson fermions

- theoretically sound
- no taste breaking
- explicit chiral symmetry breaking

Motivation ○●	Overlap details	LCP o	Staggered details o	Results 000	Conclusions
Motivatio	on & Aims				

- Chiral properties at finite T → chiral fermions are needed
- Domain-wall fermions
 - exact chiral symmetry only in $L_5 \rightarrow \infty$ limit
- Overlap fermions
 - exact lattice chiral symmetry
- Aims of this study:
 - $a \rightarrow 0$ with dynamical overlap fermions
 - cross check of staggered fermions

I	Motivation oo	Overlap details	LCP o	Staggered details	Results 000	Conclusions

Motivation	Overlap details ●○	LCP o	Staggered details o	Results 000	Conclusions
Details o	faction				

- Tree level Symanzik improved gauge action
- $N_f = 2$ overlap fermions

$$D_{\rm ov} = \left(m_0 - \frac{m}{2}\right) (1 + \gamma_5 \mathrm{sgn}\left(H_W\right)) + m, \qquad H_W = \gamma_5 D_W(-m_0)$$

- multi-shift inverter, Zolotarev rational approximation
- lowest eigenvalues of H_W separately \leftarrow Krylov–Schur algorithm
- D_W Wilson kernel:
 - $-m_0 = -1.3$
 - 2 steps of HEX smearing, $\alpha_1 = 0.72, \alpha_2 = 0.60, \alpha_3 = 0.44$

Motivation 00	Overlap details ○●	0 0	Staggered details	000	Conclusions
Topolo	av fixing				

- HMC trajectories → difficulties at topological sector boundaries
- fix topology:

$$S_E = \sum_{x} \left\{ \bar{\psi}_E(x) D_W(-m_0) \psi_E(x) + \phi^{\dagger}(x) [D_W(-m_0) + im_B \gamma_5 \tau_3] \phi(x) \right\}$$

- equivalent to adding $det \left(\frac{H_W^2(-m_0)}{H_W^2(-m_0) + m_B^2} \right)$ to $S_{g,eff.}$ Fukaya et al., *Phys.Rev.* **D74** (2006) 094505
- $m_B = 0.54$, $-m_0 = -1.3$
- m_0 and m_B are fixed in lattice units \longrightarrow infinitely large masses in the continuum limit
- in $V \rightarrow \infty$ limit physics is topology independent
- power-like corrections at finite V may arise

Lattices:

- $12^3 \cdot 24$ for $\beta = 3.6, 3.7, 3.8, 3.9$
- $16^3 \cdot 32$ for $\beta = 4.0, 4.1$
- $32^3 \cdot 32$ for $\beta = 4.2, 4.3$
- *m* = 0.015 0.06
- *a* is set using $w_0 = 0.1755 \, \text{fm}$
- chiral symmetry $\longrightarrow m_{\pi}^2 \propto m$

• *m* is set via $m_{\pi} \cdot w_0 = 0.312 \longrightarrow m_{\pi} = 350 \,\mathrm{MeV}$

Bálint C Tóth QCD thermodynamics with dynamical overlap fermions

Motivation oo	Overlap details	o C	Staggered details	Results 000	Conclusions		

Staggered reference calculations

- Tree level Symanzik improved gauge action (same as with overlap)
- $N_f = 2$ staggered fermions
- 4 steps of stout smearing, $\rho = 0.125$
- LCP analogous to overlap
 - scale via w₀
 - quark mass via $m_{\pi} \cdot w_0 = 0.312$
 - 16 ensembles in the range $\beta = 3.8 4.1$
- $N_s/N_t = 2 \longrightarrow m_{\pi} \cdot L \approx 3.5 5$ in transition regime (same as overlap)
- $N_t = 6, 8, 10$ simulations

00	oo	0 0	o	●00	Conclusions			
Chiral condensate								

Motivation	Overlap details	LCP o	Staggered details o	Results o●o	Conclusions
Polyakov	loop				

- L_0 : multiplicative divergence of the form $\exp[F_0(\beta)/T]$
- renormalization condition: $L_R (T = 208 \text{ MeV}) = 1$
- $F_0(\beta) = \frac{1}{N_t} \log L$ such that (N_t, β) corresponds to T = 208 MeV

•
$$L_R = L_0 \cdot \exp\left[-N_t \cdot F_0(\beta)\right]$$

Motivation	Overlap details	LCP o	Staggered details o	Results oo●	Conclusions

Isospin susceptibility

Motivation	Overlap details	LCP o	Staggered details o	Results	Conclusions
Conclu	sions & out	look			

Conclusions

- Not conclusive yet \longrightarrow need more statistics
- Continuum limit looks feasible
- Outlook
 - Collect more statistics
 - Larger volumes to check finite volume effects
 - Include strange quark, reach for lower pion mass

Stefan–Boltzmann limits of χ_1

N _t	4	6	8	10	12
$\xi = 2 \text{ overlap}$	1.700	1.588	1.362	1.241	1.186
$\xi = \infty$ overlap	1.619	1.513	1.290	1.170	1.117
$\xi = \infty$ staggered	2.235	1.861	1.473	1.266	1.164
$\xi = \infty$ Wilson	4.168	2.258	1.521	1.265	1.161