Nucleon form factors with light Wilson quarks

Jeremy Greena
Michael Engelhardtb Stefan Kriegc,d Stefan Meinela
John Negelea Andrew Pochinskya Sergey Syritsyne

aCenter for Theoretical Physics, Massachusetts Institute of Technology
bPhysics Department, New Mexico State University
cBergische Universität Wuppertal
dIAS, Jülich Supercomputing Centre, Forschungszentrum Jülich
eLawrence Berkeley National Laboratory

The 31st International Symposium on Lattice Field Theory
July 29–August 3, 2012
Introduction

High-precision study of excited states

Dirac and Pauli form factors near the physical m_π

Controlled study of finite-volume effects
Dirac and Pauli form factors:

\[
\langle p(P', s') | \bar{q} \gamma^\mu q | p(P, s) \rangle = \bar{u}(p', s') \left(\gamma^\mu F_1^q(Q^2) + i \sigma^{\mu\nu} \frac{\Delta_\nu}{2m_p} F_2^q(Q^2) \right) u(p, s),
\]

where \(\Delta = P' - P \), \(Q^2 = -\Delta^2 \).

- Isovector combination:

\[
F_{1,2}^v = F_{1,2}^u - F_{1,2}^d = F_{1,2}^p - F_{1,2}^n,
\]

where \(F_{1,2}^p,n \) are form factors of the electromagnetic current in a proton and in a neutron.

- Dirac and Pauli radii defined via slope at \(Q^2 = 0 \):

\[
F_{1,2}(Q^2) = F_{1,2}(0) \left(1 - \frac{1}{6} r_{1,2}^2 Q^2 + O(Q^4) \right);
\]

\(F_2(0) = \kappa \), the anomalous magnetic moment.

- Proton charge radius, \((r_E^2)^p = (r_1^2)^p + \frac{3\kappa_p}{2m_p^2} \), has 7\(\sigma \) discrepancy between measurements from \(e-p \) interactions and from Lamb shift in muonic hydrogen.
High-precision study of excited states

- USQCD ensemble with $N_f = 2 + 1$ Wilson-clover quarks coupled to stout-smeared gauge fields.
- $a \approx 0.114$ fm, $32^3 \times 96$, $m_\pi \approx 317$ MeV $\rightarrow m_\pi L = 5.9$
- Five source-sink separations: $T/a \in \{6, 8, 10, 12, 14\}$, $T \sim 0.7–1.6$ fm;
- Source tuned to optimize ground state overlap.
- ~ 24000 measurements yields reasonably precise results.
- Renormalization factors not yet computed, but this does not affect excited-states study.
Ground-state matrix elements from multiple T

- **Standard ratio-plateau method**: compute ratio

$$R(T, \tau) = \frac{C_{3pt}(T, \tau)}{C_{2pt}(T)} = c_{00} + c_{10}e^{-\Delta E}\tau + c_{01}e^{-\Delta E(T-\tau)} + c_{11}e^{-\Delta E T} + \ldots,$$

where c_{00} is the desired ground-state matrix element. Then average a fixed number of points around $\tau = T/2$, yielding asymptotic errors that fall off as $e^{-\Delta E_{10} T/2}$.

- **Summation method** (PoS(Lattice 2010) 147 [1011.1358]; *ibid*. 303 [1011.4393]): compute sums

$$S(T) = \sum_{\tau} R(T, \tau) = b + c_{00} T + d T e^{-\Delta E T} + \ldots,$$

then find their slope, which gives c_{00} with errors that fall off as $T e^{-\Delta E_{10} T}$.

- **Generalized pencil-of-function (GPoF) method** (AIP Conf. Proc. 1374, 621 [1010.0202]): recognize time-displaced operator $N^\tau(t) \equiv N(t + \tau)$ as linearly independent from $N(t)$. Use the variational method to find a linear combination of N and N^τ that eliminates the first excited state. Applying the ratio-plateau method yields the ground-state with errors $e^{-\Delta E_{20} T/2}$.

Jeremy Green (MIT)
Nucleon form factors with light Wilson quarks
Lattice 2013
Isovector Dirac form factor $F_v^1(Q^2)$
Isovector Pauli form factor $F_2^v(Q^2)$

Jeremy Green (MIT)
BMW action and ensembles

- $N_f = 2 + 1$ tree-level clover-improved Wilson fermions coupled to double-HEX-smeared gauge fields.
- Pion mass ranging from 149 MeV to 356 MeV.
- Ten coarse lattices with $a = 0.116$ fm; one fine lattice with $a = 0.09$ fm.
- No disconnected diagrams, so we focus on isovector observables.
- Three source-sink separations for controlling excited-state contributions: $T \in \{0.9, 1.2, 1.4\}$ fm; use summation method for main results.
Areas of circles scale with number of measurements: largest is 24,000.
Chiral extrapolation

Use SU(2) heavy baryon ChPT, to order ϵ^3 in SSE. Inputs:

- F_π^0, pion decay constant
- Δ, delta-nucleon mass difference
- g_A^0, axial charge
- c_A, $\pi N\Delta$ coupling
- c_V, magnetic $\gamma N\Delta$ coupling

Fit parameters

- $(r_1^2)^{\nu}$: 1
- κ^{ν}: 2
- $\kappa^{\nu}(r_2^2)^{\nu}$: 1
Dipole fitting to $F_1^\gamma(Q^2)$

$48^3 \times 48, m_\pi = 149$ MeV

$Q^2 < 0.5$ GeV2
$Q^2 < 0.3$ GeV2
$Q^2 < 0.2$ GeV2
$Q^2 < 0.1$ GeV2

$32^3 \times 48, m_\pi = 254$ MeV

$Q^2 < 0.7$ GeV2
$Q^2 < 0.5$ GeV2
$Q^2 < 0.3$ GeV2

$24^3 \times 48, m_\pi = 254$ MeV

$Q^2 < 1.2$ GeV2
$Q^2 < 0.7$ GeV2
$Q^2 < 0.5$ GeV2
Isovector Dirac radius \((r_1^2)^v\)

\[
(r_1^2)^v \text{ (fm}^2) = \frac{1}{r_2^2}v
\]

PDG

\[
\tilde{\mu}_p\coarse 48^3 \times 48
\]

\[
\tilde{\mu}_p\coarse 32^3 \times 96
\]

\[
\tilde{\mu}_p\coarse 32^3 \times 48
\]

\[
\tilde{\mu}_p\coarse 32^3 \times 24
\]

\[
\tilde{\mu}_p\coarse 24^3 \times 48
\]

\[
\tilde{\mu}_p\coarse 24^3 \times 24
\]

\[
\tilde{\mu}_p\fine 32^3 \times 64
\]

\[
\tilde{\mu}_p\coarse 48^3 \times 48
\]

\[
\tilde{\mu}_p\coarse 32^3 \times 96
\]

\[
\tilde{\mu}_p\coarse 32^3 \times 48
\]

\[
\tilde{\mu}_p\coarse 32^3 \times 24
\]

\[
\tilde{\mu}_p\coarse 24^3 \times 48
\]

\[
\tilde{\mu}_p\coarse 24^3 \times 24
\]

\[
\tilde{\mu}_p\fine 32^3 \times 64
\]

ratio method: shortest \(T\)

Jeremy Green (MIT)
Nucleon form factors with light Wilson quarks
Lattice 2013 12 / 20
Isovector Dirac radius $(r_1^2)^v$

\[(r_1^2)^v \]

PDG

μp

coarse $48^3 \times 48$

coarse $32^3 \times 24$

coarse $32^3 \times 96$

coarse $32^3 \times 48$

coarse $32^3 \times 24$

fine $32^3 \times 64$

ratio method: middle T

Jeremy Green (MIT)

Nucleon form factors with light Wilson quarks

Lattice 2013 12 / 20
Isovector Dirac radius \((r_1^2)^v\)

\begin{align*}
\text{PDG} & \quad \text{coarse } 48^3 \times 48 \quad \text{coarse } 32^3 \times 24 \\
\mu p & \quad \text{coarse } 32^3 \times 96 \quad \text{coarse } 32^3 \times 48 \\
& \quad \text{coarse } 32^3 \times 24 \quad \text{coarse } 24^3 \times 48 \\
& \quad \text{coarse } 24^3 \times 24 \\
& \quad \text{fine } 32^3 \times 64
\end{align*}

ratio method: largest \(T\)
Isovector Dirac radius \((r_1^2)^v\)
Dipole fitting to $F_2^V(Q^2)$

$F_2^V(Q^2)$ for different Q^2 ranges:
- $Q^2 < 0.5$ GeV2
- $Q^2 < 0.2$ GeV2
- $Q^2 < 0.1$ GeV2

$F_2^V(Q^2)$ for different Q^2 ranges:
- $Q^2 < 0.7$ GeV2
- $Q^2 < 0.5$ GeV2
- $Q^2 < 0.3$ GeV2

$F_2^V(Q^2)$ for different Q^2 ranges:
- $Q^2 < 1.2$ GeV2
- $Q^2 < 0.7$ GeV2
- $Q^2 < 0.5$ GeV2

$m_\pi = 149$ MeV

$m_\pi = 254$ MeV

Jeremy Green (MIT)
Dipole fitting to $F_2^v(Q^2)$

F_2^v versus Q^2 for different Wilson quark masses:
- $48^3 \times 48, m_\pi = 149$ MeV:
 - $Q^2 < 0.5$ GeV2
 - $Q^2 < 0.3$ GeV2
 - $Q^2 < 0.2$ GeV2
 - $Q^2 < 0.1$ GeV2

- $32^3 \times 48, m_\pi = 254$ MeV:
 - $Q^2 < 0.7$ GeV2
 - $Q^2 < 0.5$ GeV2
 - $Q^2 < 0.3$ GeV2

- $24^3 \times 48, m_\pi = 254$ MeV:
 - $Q^2 < 1.2$ GeV2
 - $Q^2 < 0.7$ GeV2
 - $Q^2 < 0.5$ GeV2
Isovector anomalous magnetic moment κ^v

<table>
<thead>
<tr>
<th>PDG</th>
<th>coarse $32^3 \times 24$</th>
</tr>
</thead>
<tbody>
<tr>
<td>coarse $48^3 \times 48$</td>
<td>coarse $24^3 \times 48$</td>
</tr>
<tr>
<td>coarse $32^3 \times 96$</td>
<td>coarse $24^3 \times 24$</td>
</tr>
<tr>
<td>coarse $32^3 \times 48$</td>
<td>fine $32^3 \times 64$</td>
</tr>
</tbody>
</table>

κ^v_{norm} vs m_π (GeV)

Jeremy Green (MIT)
Nucleon form factors with light Wilson quarks
Lattice 2013
Isovector Pauli radius \((r_2^2)^v\)

![Graph showing \(\kappa_{\text{norm}}(r_2^2)^v\) vs. \(m_\pi\) (GeV) for different quark masses.](image)

- **DA**: coarse \(48^3 \times 48\), coarse \(32^3 \times 24\)
- **PDG**: coarse \(32^3 \times 96\), coarse \(24^3 \times 48\)
- **Fine**: coarse \(32^3 \times 64\)

Jeremy Green (MIT)
Nucleon form factors with light Wilson quarks
Lattice 2013
Sachs form factors

\[G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{2m_N} F_2(Q^2) \]
\[G_M(Q^2) = F_1(Q^2) + F_2(Q^2) \]

- Slopes at \(Q^2 = 0 \) give rms charge and magnetic radii.
- Compare:
 1. Isovector \(G_E(Q^2) \), \(G_M(Q^2) \) from lattice calculation.
 2. Parameterization of experimental data:
 4 parameters for each of \(G_{Ep} \), \(G_{Mp} \), \(G_{Mn} \); 2 parameters for \(G_{En} \): determined from fit to experiment.
Electric form factor $G_E^v(Q^2)$

$m_\pi = 149$ MeV, ratio method, $T = 10a$
Electric form factor $G^v_E(Q^2)$

$m_\pi = 149$ MeV, summation method; $p = 0.64$
Electric form factor $G_E^v(Q^2)$

$m_\pi = 254 \text{ MeV}, \text{ summation method}; p = 3 \times 10^{-5}$
Magnetic form factor $G_M^V(Q^2)$

$m_\pi = 149 \text{ MeV}, \text{ ratio method, } T = 10a; p = 0.0006$
Magnetic form factor $G_M^V(Q^2)$

$m_\pi = 149 \text{ MeV}$, summation method; $p = 0.81$
Magnetic form factor $G_M^V(Q^2)$

$m_\pi = 254$ MeV, summation method; $p = 0.0007$
Controlled study of finite L_s and L_t effects

- Four lattice ensembles at $m_\pi \approx 250$ MeV with $a = 0.116$ fm that differ only in their volume: $32^3 \times 48$, $24^3 \times 48$, $32^3 \times 24$, and $24^3 \times 24$.

- $m_\pi L_s = 3.6$ and 4.8
- $m_\pi L_t = 3.6$ and 7.2
- Test “$m_\pi L = 4$” rule of thumb.

Results:
 - Effects consistent with zero when comparing noisy summation data.
 - Shortest source-sink separation data suggest at $m_\pi L_s = 4$:
 - possible $\sim -5\%$ effect on κ^ν and $(r_2^\nu)^\nu$
 - effect on $(r_1^\nu)^\nu$ is consistent with zero and less than 2%.
 - No effect seen for g_A.
Summary

- With both
 1. near-physical m_π
 2. reduced excited-state contributions
good agreement is achieved with experiment for isovector vector form factors.

- High-precision calculations at $m_\pi \approx 317$ MeV corroborate the excited-state behavior seen in the noisier calculations at near-physical pion masses.

- Dedicated finite-L_s and L_t study at $m_\pi \approx 250$ MeV finds that $m_\pi L = 4$, effects are generally consistent with zero.
Source tuning, high-precision ensemble

Wuppertal smearing with $\alpha = 3$, $N = 35$ using APE-smeared ($A = 2.85$, $N = 25$) gauge links.
Axial and induced pseudoscalar form factors:

\[
\langle p', \lambda' | \bar{q} \gamma^\mu \gamma_5 q | p, \lambda \rangle = \bar{u}(p', \lambda') \left(\gamma^\mu G_A^q(Q^2) + \frac{\Delta^\mu}{2m} G_P^q(Q^2) \right) \gamma_5 u(p, \lambda).
\]

Generalized form factors of the quark energy-momentum operator

\[
\langle p', \lambda' | \bar{q} \gamma^{\{\mu} i \overset{\leftrightarrow}{D}^{\nu\}} q | p, \lambda \rangle = \bar{u}(p', \lambda') \left(\bar{p}^{\{\mu} \gamma^{\nu\}} A_{20}^q(Q^2) + \frac{i\bar{p}^{\{\mu} \sigma^{\mu\}}_\alpha \Delta_\alpha}{2m} B_{20}^q(Q^2) + \frac{\Delta^{\{\mu} \Delta^{\nu\}}}{m} C_2^q(Q^2) \right) u(p, \lambda)
\]
Source and sink momenta

#	\(\langle \vec{n}'	\vec{n}\rangle\)	
0	\(\langle 0, 0, 0	0, 0, 0\rangle, \langle -1, 0, 0	-1, 0, 0\rangle\)
1	\(\langle 0, 0, 0	1, 0, 0\rangle\)	
2	\(\langle -1, 0, 0	-1, 1, 0\rangle\)	
3	\(\langle 0, 0, 0	1, 1, 0\rangle\)	
4	\(\langle -1, 0, 0	-1, 1, 1\rangle\)	
5	\(\langle -1, 0, 0	0, 1, 0\rangle\)	
6	\(\langle 0, 0, 0	1, 1, 1\rangle\)	
7	\(\langle -1, 0, 0	0, 1, 1\rangle\)	
8	\(\langle -1, 0, 0	0, 1, 1\rangle\)	
9	\(\langle -1, 0, 0	1, 1, 0\rangle\)	
10	\(\langle -1, 0, 0	1, 1, 1\rangle\)	

\[\vec{p} = \frac{2\pi}{L_s}\vec{n}\]
Isovector Axial form factor $G_A^v(Q^2)$

Jeremy Green (MIT)
Nucleon form factors with light Wilson quarks
Lattice 2013
25 / 20
Isovector induced pseudoscalar form factor $G_P^v(Q^2)$

Jeremy Green (MIT)

Nucleon form factors with light Wilson quarks

La/t_t_t_t 2013 26 / 20
Isovector generalized form factor $A^{v}_{20}(Q^2)$

Jeremy Green (MIT)

Nucleon form factors with light Wilson quarks

Lattice 2013
Isovector anomalous magnetic moment κ^v

$T = 8$ summation
$T = 10$ GPoF
$T = 12$

κ^v_{norm}

$32^3 \times 48$
$32^3 \times 24$
$24^3 \times 48$
$24^3 \times 24$
Isovector Pauli radius \((r_2^2)^v\)

![Graph showing isovector Pauli radius](image)

- \(T = 8\) summation
- \(T = 10\) G PoF
- \(T = 12\) G PoF

Jeremy Green (MIT)

Nucleon form factors with light Wilson quarks

Lattice 2013
Axial charge g_A

\begin{align*}
T = 8 & \quad \text{summation} \\
T = 10 & \quad \text{GPoF} \\
T = 12 &
\end{align*}

\begin{align*}
32^3 \times 48 \\
32^3 \times 24 \\
24^3 \times 48 \\
24^3 \times 24
\end{align*}
Isovector quark momentum fraction $\langle x \rangle_{u-d}$

![Graph showing the isovector quark momentum fraction for different lattice sizes and temperatures.](image-url)
\(L_s \to \infty, L_t \to \infty \) extrapolation

Fit \(A + Be^{-m_\pi L_s} + Ce^{-m_\pi L_t} \) to summation data:

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(Be^{-4})</th>
<th>(Ce^{-4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((r_1^2) \nu)</td>
<td>0.338(48)</td>
<td>0.008(38)</td>
<td>0.003(28)</td>
</tr>
<tr>
<td>(\kappa \nu)</td>
<td>3.19(36)</td>
<td>-0.12(35)</td>
<td>-0.20(23)</td>
</tr>
<tr>
<td>((r_2^2) \nu)</td>
<td>0.476(98)</td>
<td>-0.032(106)</td>
<td>-0.028(68)</td>
</tr>
<tr>
<td>(g_A)</td>
<td>1.204(67)</td>
<td>-0.009(54)</td>
<td>-0.016(39)</td>
</tr>
<tr>
<td>(\langle x \rangle_{u-d})</td>
<td>0.178(18)</td>
<td>0.021(14)</td>
<td>-0.014(10)</td>
</tr>
</tbody>
</table>
Relative error, $m_\pi L_s = 4$

![Graph showing relative error with $m_\pi L_s = 4$ and T = 8, T = 10, T = 12.](image)

Plotted: $e^{-4}B/A$
Relative error, $m_\pi L_t = 4$

Plotted: $e^{-4}C/A$