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The Λ(1405)

• The Λ(1405) is the lowest-lying odd-parity state of the Λ baryon.

• It has a mass of 1405.1+1.3
−1.0 MeV.

◦ This is lower than the lowest odd-parity nucleon state (N(1535)),
even though it has a valence strange quark.

• We now understand this as a consequence of its flavour-singlet
structure.
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The Λ(1405)
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The Λ(1405) and Lattice QCD

Our recent work has successfully isolated three low-lying states.
BM, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

• An extrapolation of the trend of the lowest state reproduces the
mass of the Λ(1405).

• Subsequent studies have confirmed these results.
G. P. Engel, C. B. Lang, A. Schäfer, Phys. Rev. D 87, 034502 (2013)
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The Λ(1405) and Lattice QCD

The variational analysis is necessary to isolate and analyse the
Λ(1405).

• Our current insertion (tSST = 21) is 5 time slices after the source
(tsrc = 16).
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The Λ(1405) and Lattice QCD

16 18 20 22 24 26 28 30
−24

−22

−20

−18

−16

−14

−

−10

Euclidean Time

ln
(G

)

12

χ2/dof = 0.55

5 of 27



Simulation Details

We are using the PACS-CS (2 + 1)-flavour ensembles, available
through the ILDG.

S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

• Lattice size of 323 × 64 with β = 1.90.
• 5 pion masses, ranging from 640 MeV down to 156 MeV.
• Single strange quark mass, with κs = 0.13640.
◦ We partially quench by using κs = 0.13665 for the valence strange

quarks to reproduce the physical kaon mass.
• We consider both the Sommer and PACS-CS schemes to set the

scale.
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Variational Analysis

By using multiple operators, we can isolate and analyse individual
energy eigenstates:
• Construct the correlation matrix

Gij(p; t) =
∑

x
e−i p·x 〈Ω|χi (x)χj(0)|Ω〉 ,

for some set {χi } operators that couple to the states of interest.

• Note: all correlation functions have an implicit trace over the
spinor indices with some Dirac matrix:

G ≡ tr(ΓG)
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Variational Analysis

• Solve for the left, vα(p), and right, uα(p), generalised eigenvectors
of G(p; t + δt) and G(p; t):

G(p; t + δt) uα(p) = e−Eα(p) ∆t G(p; t) uα(p)

vαT(p) G(p; t + δt) = e−Eα(p) ∆t vαT(p) G(p; t)

• These eigenvectors identify “ideal” combinations of the original
operators that perfectly isolate individual energy eigenstates at
momentum p:

φα = vαi (p)χi φα = uαi (p)χi
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Eigenstate-Projected Correlation Functions

• Using these “perfect” operators, we can extract correlation
functions for these energy eigenstates using

Gα(p; t) =
∑

x
e−i p·x 〈Ω|φα(x)φα(0)|Ω〉

=
∑

x
e−i p·x 〈Ω|vαi (p)χi (x)χj(0) uαj (p)|Ω〉

= vαT(p) G(p; t) uα(p)
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Choice of Operators

• We have a lot of flexibility in the operators we choose.
◦ Only requirement is that they couple to the states of interest.

• However:
◦ too few operators and the states won’t be sufficiently isolated, and
◦ insufficiently independent operators and the matrix will be too

ill-conditioned to solve for the eigenvectors.
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Operators Used in Λ(1405) Analysis

There are a number of operators that have the correct quantum
numbers to couple to the Λ channel. We use
• the flavour-octet operators

χ8
1 =

1√
6
εabc(2(uaCγ5db)sc + (uaCγ5sb)dc − (daCγ5sb)uc)

χ8
2 =

1√
6
εabc(2(uaCdb)γ5sc + (uaCsb)γ5dc − (daCsb)γ5uc)

• the flavour-singlet operator

χ1 = 2εabc((uaCγ5db)sc − (uaCγ5sb)dc + (daCγ5sb)uc)
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Operators Used in Λ(1405) Analysis

We also use gauge-invariant Gaussian smearing to increase our
operator basis.
• These results use 16 and 100 sweeps.
◦ Gives a 6× 6 matrix.

• Also considered 35 and 100 sweeps.
◦ Results are consistent, however the statistical noise increases due to

the increased smearing.
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Extracting Form Factors from Lattice QCD

• To extract the form factors for a state α, we need to calculate the
three-point correlation function

Gµ
α(p′, p; t2, t1) =

∑
x1, x2

e−i p′·x2ei(p′−p)·x1 〈Ω|φα(x2) jµ(x1)φα(0)|Ω〉

• This takes the form

e−Eα(p′)(t2−t1)e−Eα(p)t1
∑
s, s′

〈Ω|φα|p′, s ′〉 〈p′, s ′|jµ|p, s〉 〈p, s|φα|Ω〉

where 〈p′, s ′|jµ|p, s〉 encodes the form factors of the interaction.
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Excited State Form Factors

• Using the nature of these “perfect” operators, the
eigenstate-projected correlation function is

Gµ
α(p′, p; t2, t1) =

∑
x1, x2

e−i p′·x2ei(p′−p)·x1×

× 〈Ω|vαi (p′)χi (x2) jµ(x1)χj(0) uαi (p)|Ω〉

= vαT(p′) Gµ
ij (p′, p; t2, t1) uα(p)

where

Gµ
ij (p′, p; t2, t1) =

∑
x1, x2

e−i p′·x2ei(p′−p)·x1 〈Ω|χi (x2) jµ(x1)χj(0)|Ω〉

is the matrix constructed from the three-point correlation functions
of the original operators {χi }.
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Extracting Form Factors from Lattice QCD

• To eliminate the time dependence of the three-point correlation
function, we construct the ratio

Rµ
α(p′, p; t2, t1) =

(Gµ
α(p′, p; t2, t1) Gµ

α(p, p′; t2, t1)

Gα(p′; t2) Gα(p; t2)

)1/2

• To further simply things, we define the reduced ratio

Rµ
α =

( 2Eα(p)

Eα(p) + mα

)1/2 ( 2Eα(p′)
Eα(p′) + mα

)1/2
Rµ
α
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Current Matrix Element for Spin-1/2 Baryons
The current matrix element for spin-1/2 baryons can be written in the
form

〈p′, s ′|jµ|p, s〉 =

(
m2
α

Eα(p)Eα(p′)

)1/2

×

× u
(

F1(q2) γµ + i F2(q2)σµν
qν

2mα

)
u

• The Dirac and Pauli form factors are related to the Sachs form
factors through

GE(q2) = F1(q2)− q2

(2mα)2 F2(q2)

GM(q2) = F1(q2) + F2(q2)
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Sachs Form Factors for Spin-1/2 Baryons
• A suitable choice of momentum (q = (q, 0, 0)) and the (implicit)

Dirac matrices allows us to directly access the Sachs form factors:
◦ for GE: using Γ±

4 for both two- and three-point,

Gα
E (q2) = R4

α(q, 0; t2, t1)

◦ for GM: using Γ±
4 for two-point and Γ±

j for three-point,

|εijk qi | Gα
M(q2) = (Eα(q) + mα) Rk

α(q, 0; t2, t1)

◦ where for positive parity states,

Γ+
j =

1
2

[
σj 0
0 0

]
Γ+

4 =
1
2

[
I 0
0 0

]
and for negative parity states,

Γ−
j = −γ5Γ+

j γ5 = −1
2

[
0 0
0 σj

]
Γ−

4 = −γ5Γ+
4 γ5 = −1

2

[
0 0
0 I

]
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GE for the Λ(1405) at Q2 ∼ 0.15 GeV2
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Correcting for Varying Q2

Since the Q2 changes with m2
π, we need to shift to a common Q2 to

make meaningful comparisons:

• assume a dipole dependence on Q2:

GE(Q2) =

(
Λ

Λ + Q2

)2
GE(0)

• solve for Λ using GE(0) = 1 (unit charge quarks) for each m2
π

• evaluate GE at a common Q2 (we used 0.16 GeV2)
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GE for the Λ(1405) at Q2 = 0.16 GeV2
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Structure of the Λ(1405)

These results are consistent with the development of a non-trivial KN
component at light quark masses.

• Noting that the centre of mass of the KN is nearer the heavier N,
compared to the ground state,

◦ the anti–light-quark contribution is distributed further out by the K
and thus leaves an enhanced light-quark form factor.

◦ the strange quark is distributed further out by the K and thus has a
smaller form factor.
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GM for the Λ at Q2 ∼ 0.15 GeV2
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GM for the Λ at Q2 ∼ 0.15 GeV2

The ground state Λ is flavour-octet:
• the light quarks form a scalar diquark, which has no spin
• the strange quark is the dominant contribution to the magnetic

moment
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GM for the Λ at Q2 ∼ 0.15 GeV2
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GM for the Λ(1405) at Q2 ∼ 0.15 GeV2

For the Λ(1405), with a flavour-singlet structure, all three flavours
play the same role.

• Expect µ = 0 in the SU(3) limit, so that G light
M = Gstrange

M .
• The magnetic moment is proportional to 1/m, so as the light

quark mass decreases, the form factor should increase.
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GM for the Λ(1405) at Q2 ∼ 0.15 GeV2

If we consider a KN dressing,

K0, K−

n, p Λ*Λ*

• The light quark sector will be governed by p + n.

◦ This is a positive, non-analytic contribution to the dressing and will
enhance the light form factor.

• There is no contribution to the strange quark magnetic moment

◦ This will suppress the strange quark form factor of the Λ(1405).

• Gstrange
M is consistent with zero!

• The structure of the Λ(1405) is dominated by a bound KN.
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Fitted GM(t) at m2
π = 0.151 GeV2, Q2 = 0.160 GeV2
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Fitted GM(t) at m2
π = 0.030 GeV2, Q2 = 0.169 GeV2
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Conclusions

• After decade of speculation, the nature of Λ(1405) is finally
revealed from the first principles of QCD.

• Our results are consistent with the development of a non-trivial
KN component as the quark masses become light.

• At the physical point the structure of the Λ(1405) is dominated by
a bound KN.

27 of 27


	Introduction & Techniques
	Electric Form Factors
	Magnetic Form Factors
	Conclusion

