Electromagnetic Structure of the $\Lambda(1405)$

Ben Menadue
Waseem Kamleh Derek Leinweber
Selim Mahbub Ben Owen

CSSM
School of Chemistry & Physics
University of Adelaide

Lattice 2013
Outline

Introduction & Techniques

Electric Form Factors

Magnetic Form Factors

Conclusion
The $\Lambda(1405)$

- The $\Lambda(1405)$ is the lowest-lying odd-parity state of the Λ baryon.
The $\Lambda(1405)$

- The $\Lambda(1405)$ is the lowest-lying odd-parity state of the Λ baryon.
- It has a mass of $1405.1^{+1.3}_{-1.0}$ MeV.
 - This is lower than the lowest odd-parity nucleon state ($N(1535)$), even though it has a valence strange quark.
The $\Lambda(1405)$

![Graph showing the mass distribution of Λ and N particles with mass values ranging from 500 to 2000 MeV.]
The Λ(1405)

- The Λ(1405) is the lowest-lying odd-parity state of the Λ baryon.
- It has a mass of $1405.1^{+1.3}_{-1.0}$ MeV.
 - This is lower than the lowest odd-parity nucleon state ($N(1535)$), even though it has a valence strange quark.
- We now understand this as a consequence of its flavour-singlet structure.
The $\Lambda(1405)$

![Graph showing unit eigenvector component vs. m_{π}^2 [GeV2] with data points for 16 and 100 sweeps.](image)
The $\Lambda(1405)$ and Lattice QCD

Our recent work has successfully isolated three low-lying states.

- An extrapolation of the trend of the lowest state reproduces the mass of the $\Lambda(1405)$.
The $\Lambda(1405)$ and Lattice QCD
The $\Lambda(1405)$ and Lattice QCD

Our recent work has successfully isolated three low-lying states.

• An extrapolation of the trend of the lowest state reproduces the mass of the $\Lambda(1405)$.
• Subsequent studies have confirmed these results.

The $\Lambda(1405)$ and Lattice QCD

The variational analysis is necessary to isolate and analyse the $\Lambda(1405)$.
The $\Lambda(1405)$ and Lattice QCD
The variational analysis is necessary to isolate and analyse the $\Lambda(1405)$.

- Our current insertion ($t_{SS-T} = 21$) is 5 time slices after the source ($t_{src} = 16$).
The $\Lambda(1405)$ and Lattice QCD
The $\Lambda(1405)$ and Lattice QCD

\[\chi^2/dof = 0.55 \]
Simulation Details

We are using the PACS-CS $(2 + 1)$-flavour ensembles, available through the ILDG.

- Lattice size of $32^3 \times 64$ with $\beta = 1.90$.
- 5 pion masses, ranging from 640 MeV down to 156 MeV.
- Single strange quark mass, with $\kappa_s = 0.13640$.
 - We partially quench by using $\kappa_s = 0.13665$ for the valence strange quarks to reproduce the physical kaon mass.
- We consider both the Sommer and PACS-CS schemes to set the scale.
Variational Analysis

By using multiple operators, we can isolate and analyse individual energy eigenstates:

- Construct the correlation matrix

\[G_{ij}(p; t) = \sum_x e^{-ip \cdot x} \langle \Omega | \chi_i(x) \chi_j(0) | \Omega \rangle, \]

for some set \(\{ \chi_i \} \) operators that couple to the states of interest.
Variational Analysis

By using multiple operators, we can isolate and analyse individual energy eigenstates:

• Construct the correlation matrix

\[G_{ij}(p; t) = \sum_x e^{-i p \cdot x} \langle \Omega | \chi_i(x) \bar{\chi}_j(0) | \Omega \rangle , \]

for some set \(\{ \chi_i \} \) operators that couple to the states of interest.

• Note: all correlation functions have an implicit trace over the spinor indices with some Dirac matrix:

\[G \equiv \text{tr}(\Gamma G) \]
Variational Analysis

• Solve for the left, $v^\alpha(p)$, and right, $u^\alpha(p)$, generalised eigenvectors of $G(p; t + \delta t)$ and $G(p; t)$:

$$\begin{align*}
G(p; t + \delta t) u^\alpha(p) &= e^{-E^\alpha(p) \Delta t} G(p; t) u^\alpha(p) \\
v^{\alpha T}(p) G(p; t + \delta t) &= e^{-E^\alpha(p) \Delta t} v^{\alpha T}(p) G(p; t)
\end{align*}$$
Variational Analysis

- Solve for the left, $v^\alpha(p)$, and right, $u^\alpha(p)$, generalised eigenvectors of $G(p; t + \delta t)$ and $G(p; t)$:

 $$ G(p; t + \delta t) u^\alpha(p) = e^{-E^\alpha(p) \Delta t} G(p; t) u^\alpha(p) $$

 $$ v^{\alpha_T}(p) G(p; t + \delta t) = e^{-E^\alpha(p) \Delta t} v^{\alpha_T}(p) G(p; t) $$

- These eigenvectors identify “ideal” combinations of the original operators that perfectly isolate individual energy eigenstates at momentum p:

 $$ \phi^\alpha = v^\alpha_i(p) \chi_i $$

 $$ \phi^\alpha = u^\alpha_i(p) \bar{\chi}_i $$
Using these “perfect” operators, we can extract correlation functions for these energy eigenstates using

\[G_\alpha(p; t) = \sum_x e^{-ip \cdot x} \langle \Omega | \phi_\alpha(x) \bar{\phi}_\alpha(0) | \Omega \rangle = \sum_x e^{-ip \cdot x} \langle \Omega | v_\alpha^T(p) \chi_i(x) \bar{\chi}_j(0) u_\alpha^T(p) | \Omega \rangle = v_\alpha^T(p) G(p; t) u_\alpha^T(p) \]
Choice of Operators

• We have a lot of flexibility in the operators we choose.
 ○ Only requirement is that they couple to the states of interest.
Choice of Operators

• We have a lot of flexibility in the operators we choose.
 ◦ Only requirement is that they couple to the states of interest.

• However:
 ◦ too few operators and the states won’t be sufficiently isolated, and
 ◦ insufficiently independent operators and the matrix will be too ill-conditioned to solve for the eigenvectors.
Operators Used in $\Lambda(1405)$ Analysis

There are a number of operators that have the correct quantum numbers to couple to the Λ channel. We use

- the flavour-octet operators

\[
\chi_1^8 = \frac{1}{\sqrt{6}} \varepsilon^{abc} (2(u^a C \gamma_5 d^b)s^c + (u^a C \gamma_5 s^b)d^c - (d^a C \gamma_5 s^b)u^c)
\]

\[
\chi_2^8 = \frac{1}{\sqrt{6}} \varepsilon^{abc} (2(u^a C d^b)\gamma_5 s^c + (u^a C s^b)\gamma_5 d^c - (d^a C s^b)\gamma_5 u^c)
\]

- the flavour-singlet operator

\[
\chi_1^1 = 2\varepsilon^{abc} ((u^a C \gamma_5 d^b)s^c - (u^a C \gamma_5 s^b)d^c + (d^a C \gamma_5 s^b)u^c)
\]
Operators Used in $\Lambda(1405)$ Analysis

We also use gauge-invariant Gaussian smearing to increase our operator basis.

- These results use 16 and 100 sweeps.
 - Gives a 6×6 matrix.

Also considered 35 and 100 sweeps.
- Results are consistent, however the statistical noise increases due to the increased smearing.
Operators Used in $\Lambda(1405)$ Analysis

We also use gauge-invariant Gaussian smearing to increase our operator basis.

- These results use 16 and 100 sweeps.
 - Gives a 6×6 matrix.
- Also considered 35 and 100 sweeps.
 - Results are consistent, however the statistical noise increases due to the increased smearing.
To extract the form factors for a state α, we need to calculate the three-point correlation function

$$G^\mu_\alpha(p', p; t_2, t_1) = \sum_{x_1, x_2} e^{-i p' \cdot x_2} e^{i (p' - p) \cdot x_1} \langle \Omega | \phi^\alpha (x_2) j^\mu (x_1) \overline{\phi}^\alpha (0) | \Omega \rangle$$
Extracting Form Factors from Lattice QCD

• To extract the form factors for a state α, we need to calculate the three-point correlation function

$$G_\alpha^\mu(p', p; t_2, t_1) = \sum_{x_1, x_2} e^{-i p' \cdot x_2} e^{i (p' - p) \cdot x_1} \langle \Omega | \phi^\alpha(x_2) j^\mu(x_1) \overline{\phi}^\alpha(0) | \Omega \rangle$$

• This takes the form

$$e^{-E_\alpha(p')(t_2 - t_1)} e^{-E_\alpha(p)t_1} \sum_{s, s'} \langle \Omega | \phi^\alpha | p', s' \rangle \langle p', s' | j^\mu | p, s \rangle \langle p, s | \overline{\phi}^\alpha | \Omega \rangle$$

where $\langle p', s' | j^\mu | p, s \rangle$ encodes the form factors of the interaction.
Excited State Form Factors

- Using the nature of these “perfect” operators, the eigenstate-projected correlation function is

\[G_{\alpha}^{\mu}(p', p; t_2, t_1) = \sum_{x_1, x_2} e^{-i p' \cdot x_2} e^{i (p' - p) \cdot x_1} \times \]

\[\langle \Omega | v_\alpha^{\chi}(p') \chi_i(x_2) j^\mu(x_1) \bar{\chi}_j(0) u^\alpha_i(p) | \Omega \rangle \]

\[= v^{\alpha T}(p') \cdot G_{ij}^{\mu}(p', p; t_2, t_1) \cdot u^\alpha(p) \]

where

\[G_{ij}^{\mu}(p', p; t_2, t_1) = \sum_{x_1, x_2} e^{-i p' \cdot x_2} e^{i (p' - p) \cdot x_1} \langle \Omega | \chi_i(x_2) j^\mu(x_1) \bar{\chi}_j(0) | \Omega \rangle \]

is the matrix constructed from the three-point correlation functions of the original operators \(\{ \chi_i \} \).
To eliminate the time dependence of the three-point correlation function, we construct the ratio

\[R^\mu(\mathbf{p}', \mathbf{p}; t_2, t_1) = \left(\frac{G^\mu_\alpha(\mathbf{p}', \mathbf{p}; t_2, t_1) G^\mu_\alpha(\mathbf{p}, \mathbf{p}'; t_2, t_1)}{G_\alpha(\mathbf{p}'; t_2) G_\alpha(\mathbf{p}; t_2)} \right)^{1/2} \]
Extracting Form Factors from Lattice QCD

- To eliminate the time dependence of the three-point correlation function, we construct the ratio

\[R_{\alpha}(\mathbf{p}', \mathbf{p}; t_2, t_1) = \left(\frac{G_{\alpha}(\mathbf{p}', \mathbf{p}; t_2, t_1) G_{\alpha}(\mathbf{p}, \mathbf{p}'; t_2, t_1)}{G_{\alpha}(\mathbf{p}'; t_2) G_{\alpha}(\mathbf{p}; t_2)} \right)^{1/2} \]

- To further simplify things, we define the reduced ratio

\[\overline{R}_{\alpha}^\mu = \left(\frac{2E_{\alpha}(\mathbf{p})}{E_{\alpha}(\mathbf{p}) + m_{\alpha}} \right)^{1/2} \left(\frac{2E_{\alpha}(\mathbf{p}')}{E_{\alpha}(\mathbf{p}') + m_{\alpha}} \right)^{1/2} R_{\alpha}^\mu \]
Current Matrix Element for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons can be written in the form

\[\langle p', s' | j_\mu | p, s \rangle = \left(\frac{m^2_\alpha}{E_\alpha(p)E_\alpha(p')} \right)^{1/2} \times \]

\[\times \bar{u} \left(F_1(q^2) \gamma^\mu + i F_2(q^2) \sigma^{\mu\nu} \frac{q^\nu}{2m_\alpha} \right) u \]
Current Matrix Element for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons can be written in the form

\[
\langle p', s' | j^\mu | p, s \rangle = \left(\frac{m_\alpha^2}{E_\alpha(p) E_\alpha(p')} \right)^{1/2} \times \\
\times \bar{u} \left(F_1(q^2) \gamma^\mu + i F_2(q^2) \sigma^{\mu\nu} \frac{q^\nu}{2m_\alpha} \right) u
\]

- The Dirac and Pauli form factors are related to the Sachs form factors through

\[
G_E(q^2) = F_1(q^2) - \frac{q^2}{(2m_\alpha)^2} F_2(q^2)
\]

\[
G_M(q^2) = F_1(q^2) + F_2(q^2)
\]
Sachs Form Factors for Spin-1/2 Baryons

- A suitable choice of momentum \(\mathbf{q} = (q, 0, 0) \) and the (implicit) Dirac matrices allows us to directly access the Sachs form factors:
 - for \(G_E \): using \(\Gamma_4^\pm \) for both two- and three-point,
 \[
 G_E^\alpha(q^2) = \bar{R}_\alpha^4(q, 0; t_2, t_1)
 \]
 - for \(G_M \): using \(\Gamma_4^\pm \) for two-point and \(\Gamma_j^\pm \) for three-point,
 \[
 |\varepsilon_{ijk} \, q^i| \, G_M^\alpha(q^2) = (E_\alpha(q) + m_\alpha) \bar{R}_\alpha^k(q, 0; t_2, t_1)
 \]
 - where for positive parity states,
 \[
 \Gamma_j^+ = \frac{1}{2} \begin{bmatrix} \sigma_j & 0 \\ 0 & 0 \end{bmatrix} \quad \Gamma_4^+ = \frac{1}{2} \begin{bmatrix} \mathbb{I} & 0 \\ 0 & 0 \end{bmatrix}
 \]
 and for negative parity states,
 \[
 \Gamma_j^- = -\gamma_5 \Gamma_j^+ \gamma_5 = -\frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & \sigma_j \end{bmatrix} \quad \Gamma_4^- = -\gamma_5 \Gamma_4^+ \gamma_5 = -\frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & \mathbb{I} \end{bmatrix}
 \]
G_E for the $\Lambda(1405)$ at $Q^2 \sim 0.15 \text{ GeV}^2$
Correcting for Varying Q^2

Since the Q^2 changes with m_{π}^2, we need to shift to a common Q^2 to make meaningful comparisons:
Correcting for Varying Q^2

Since the Q^2 changes with m^2_π, we need to shift to a common Q^2 to make meaningful comparisons:

- assume a dipole dependence on Q^2:

$$G_E(Q^2) = \left(\frac{\Lambda}{\Lambda + Q^2} \right)^2 G_E(0)$$
Correcting for Varying Q^2

Since the Q^2 changes with m_{π}^2, we need to shift to a common Q^2 to make meaningful comparisons:

- assume a dipole dependence on Q^2:
 \[
 G_E(Q^2) = \left(\frac{\Lambda}{\Lambda + Q^2} \right)^2 G_E(0)
 \]

- solve for Λ using $G_E(0) = 1$ (unit charge quarks) for each m_{π}^2
Correcting for Varying Q^2

Since the Q^2 changes with m^2_π, we need to shift to a common Q^2 to make meaningful comparisons:

- assume a dipole dependence on Q^2:
 \[
 G_E(Q^2) = \left(\frac{\Lambda}{\Lambda + Q^2} \right)^2 G_E(0)
 \]

- solve for Λ using $G_E(0) = 1$ (unit charge quarks) for each m^2_π
- evaluate G_E at a common Q^2 (we used 0.16 GeV2)
G_E for the $\Lambda(1405)$ at $Q^2 = 0.16$ GeV2
Structure of the $\Lambda(1405)$

These results are consistent with the development of a non-trivial $\bar{K}N$ component at light quark masses.
Structure of the $\Lambda(1405)$

These results are consistent with the development of a non-trivial $\bar{K}N$ component at light quark masses.

- Noting that the centre of mass of the $\bar{K}N$ is nearer the heavier N, compared to the ground state,
 - the anti–light-quark contribution is distributed further out by the \bar{K} and thus leaves an enhanced light-quark form factor.
Structure of the Λ(1405)
Structure of the $\Lambda(1405)$

These results are consistent with the development of a non-trivial $\bar{K}N$ component at light quark masses.

- Noting that the centre of mass of the $\bar{K}N$ is nearer the heavier N, compared to the ground state,
 - the anti-light-quark contribution is distributed further out by the \bar{K} and thus leaves an enhanced light-quark form factor.
 - the strange quark is distributed further out by the \bar{K} and thus has a smaller form factor.
Structure of the Λ(1405)
G_M for the Λ at $Q^2 \sim 0.15 \text{ GeV}^2$
G_M for the Λ at $Q^2 \sim 0.15 \text{ GeV}^2$

The ground state Λ is flavour-octet:

- the light quarks form a scalar diquark, which has no spin
- the strange quark is the dominant contribution to the magnetic moment
G_M for the Λ at $Q^2 \sim 0.15 \text{GeV}^2$
For the $\Lambda(1405)$, with a flavour-singlet structure, all three flavours play the same role.

G_M for the $\Lambda(1405)$ at $Q^2 \sim 0.15 \text{ GeV}^2$
G_M for the $\Lambda(1405)$ at $Q^2 \sim 0.15 \text{ GeV}^2$

For the $\Lambda(1405)$, with a flavour-singlet structure, all three flavours play the same role.

• Expect $\mu = 0$ in the SU(3) limit, so that $G_M^{\text{light}} = G_M^{\text{strange}}$.
G_M for the $\Lambda(1405)$ at $Q^2 \sim 0.15 \text{ GeV}^2$
For the $\Lambda(1405)$, with a flavour-singlet structure, all three flavours play the same role.

- Expect $\mu = 0$ in the SU(3) limit, so that $G_M^{\text{light}} = G_M^{\text{strange}}$.
- The magnetic moment is proportional to $1/m$, so as the light quark mass decreases, the form factor should increase.
G_M for the $\Lambda(1405)$ at $Q^2 \sim 0.15 \text{ GeV}^2$
G_M for the $\Lambda(1405)$ at $Q^2 \sim 0.15 \text{ GeV}^2$

If we consider a $\bar{K}N$ dressing,

\[\Lambda^* \rightarrow n, p \rightarrow \Lambda^* \]

\[\bar{K}^0, K^- \]
If we consider a $\bar{K}N$ dressing,

- The light quark sector will be governed by $p + n$.
 - This is a positive, non-analytic contribution to the dressing and will enhance the light form factor.
G_M for the $\Lambda(1405)$ at $Q^2 \sim 0.15$ GeV2
If we consider a $\bar{K}N$ dressing,

- The light quark sector will be governed by $p + n$.
 - This is a positive, non-analytic contribution to the dressing and will enhance the light form factor.
- There is no contribution to the strange quark magnetic moment.
 - This will suppress the strange quark form factor of the $\Lambda(1405)$.

\[G_M \text{ for the } \Lambda(1405) \text{ at } Q^2 \sim 0.15 \text{ GeV}^2 \]
G_M for the $\Lambda(1405)$ at $Q^2 \sim 0.15$ GeV2
G_M for the $\Lambda(1405)$ at $Q^2 \sim 0.15$ GeV2

If we consider a $\bar{K}N$ dressing,

- The light quark sector will be governed by $p + n$.
 - This is a positive, non-analytic contribution to the dressing and will enhance the light form factor.
- There is no contribution to the strange quark magnetic moment.
 - This will suppress the strange quark form factor of the $\Lambda(1405)$.
- G_{M}^{strange} is consistent with zero!
G_M for the $\Lambda(1405)$ at $Q^2 \sim 0.15 \text{ GeV}^2$
If we consider a $\bar{K}N$ dressing,

- The light quark sector will be governed by $p + n$.
 - This is a positive, non-analytic contribution to the dressing and will enhance the light form factor.
- There is no contribution to the strange quark magnetic moment.
 - This will suppress the strange quark form factor of the $\Lambda(1405)$.
- G_M^{strange} is consistent with zero!
- The structure of the $\Lambda(1405)$ is dominated by a bound $\bar{K}N$.

\[G_M \text{ for the } \Lambda(1405) \text{ at } Q^2 \sim 0.15 \text{ GeV}^2 \]
Fitted $G_M(t)$ at $m_\pi^2 = 0.151$ GeV2, $Q^2 = 0.160$ GeV2
Fitted $G_M(t)$ at $m^2_\pi = 0.030$ GeV2, $Q^2 = 0.169$ GeV2
Conclusions

- After decade of speculation, the nature of $\Lambda(1405)$ is finally revealed from the first principles of QCD.
- Our results are consistent with the development of a non-trivial $\bar{K}N$ component as the quark masses become light.
- At the physical point the structure of the $\Lambda(1405)$ is dominated by a bound $\bar{K}N$.