

SU(3) flavour breaking and baryon structure

James Zanotti The University of Adelaide

QCDSF Collaboration (A. Cooke, R. Horsley, Y. Nakamura, D. Pleiter, P. Rakow, P. Shanahan, G. Schierholz)

Lattice 2013, July 29 - August 3, 2013, Mainz, Germany

See also poster by Ashley Cooke

Outline

- Introduction
- Tuning and simulation parameters
- Hyperon Results
 - Electromagnetic Form Factors
 - Axial Charges
- SU(3) Flavour Breaking Expansions
- Semileptonic decays

[arXiv:1003.1114 (PLB), 1102.5300 (PRD)]

See also poster by Ashley Cooke

Motivation for Investigation of Hadron Structure

- We know the nucleon is not a point-like particle but in fact is composed of quarks and gluons
- But how are these constituents distributed inside the nucleon?
- How do they combine to produce its experimentally observed properties?
- For example
 - "Spin crisis": quarks carry on ~30% of the proton's spin
 - gluons? orbital angular momentum?

- Understanding how the nucleon is built from its quark and gluon constituents remains one the most important and challenging questions in modern nuclear physics.
- Lattice has a big role to play in tackling these questions.

Motivation for Investigation of Hadron Structure

- A lot of progress in computing nucleon and pion observables on the Lattice see plenary by S. Syritsyn and other parallel talks, e.g. Alexandrou, Collins, Jäger, Najjar,
- Little has been done for the Hyperons

[hep-lat/0604022 (CSSM, quenched)] [arXiv:0712.1214, 0812.4456 (HWL,KO)] [arXiv:0910.4190 (Lang et al.)] [arXiv:1209.6115 (Sasaki)]

- Only a few Hyperon properties have been measured experimentally
 - Magnetic moments
 - Charge radii Σ^-
 - Axial charges (not directly, experimental decay rates + SU(3)_f/ChPT)
 - Semileptonic decay rates $\begin{aligned} \Xi^0 \to \Sigma^+ \ell \nu_\ell & \Sigma^- \to n \ell \nu_\ell \\ \Xi^- \to \Lambda^0 \ell \nu_\ell & \Lambda^0 \to p \ell \nu_\ell \end{aligned}$

• While on the Lattice, they should (in principle) be easier than nucleon observables

Motivation for Investigation of Hadron Structure

- Charge and magnetic distribution of hyperons
- Examine the role of SU(3) flavour symmetry breaking in these distributions
- Insights into the role of hidden flavour (e.g. strangeness in the proton)

• Lattice simulations currently in isospin-symmetric limit $m_u = m_d$

Recent progress in isospin-breaking effects in masses, etc (see plenary by Nazario)

• QCD is flavour-blind, so could think of the s quark as a very heavy d quark and compare lattice results for $\Sigma^+(uus)$ with p(uud) to gain an idea of what to expect when we move to 1+1+1-flavour simulations

Idea behind the charge-symmetry violation determinations in [arXiv:1012.0215] and [arXiv:1204.3492]

Lattice Set-Up

- N_f =2+1 O(a)-improved Clover fermions ("SLiNC" action)
- Tree-level Symanzik gluon action (plaq + rect)
- Most results from a single lattice spacing (a~0.08fm), but simulations and preliminary results becoming available at a~0.06fm
- Novel method for tuning the quark masses [arXiv:1003.1114 (PLB), 1102.5300 (PRD)]
 See also parallel talk by R.Horsley

- No study of systematics (disconnected, excited states, ...)
 - Hopefully similar for the octet

• Need to choose a path to physical point

- Need to choose a path to physical point
- Start from a point on the SU(3)-symmetric line

- Need to choose a path to physical point
- Start from a point on the SU(3)-symmetric line
- Extrapolate to physical point by
 - ${\mbox{ \bullet e.g.}}$ keeping $m_{\mbox{s}}$ fixed

- Need to choose a path to physical point
- Start from a point on the SU(3)-symmetric line
- Extrapolate to physical point by
 - ${\mbox{ \bullet e.g.}}$ keeping $m_{\mbox{s}}$ fixed

- Need to choose a path to physical point
- Start from a point on the SU(3)-symmetric line
- Our choice is
 - to keep the singlet quark mass fixed

$$\overline{m}^R = \frac{1}{3}(2m_l^R + m_s^R)$$

- Several benefits:
 - Any flavour singlet quantity can be used to set the scale $(r_0, X_{\pi}, X_N, t_0, w_0, ...)$
 - Simplified SU(3)-flavour expansions [arXiv:1102.5300 (PRD)]
 - Kaon mass approached its physical value from below (better convergence of SU(3) ChPT?
 A. Schäfer (Wed, 5D, 08:50)

- Need to choose a path to physical point
- Start from a point on the SU(3)-symmetric line
- Our choice is
 - to keep the singlet quark mass fixed

$$\overline{m}^R = \frac{1}{3}(2m_l^R + m_s^R)$$

- Several benefits:
 - Any flavour singlet quantity can be used to set the scale $(r_0, X_{\pi}, X_N, t_0, w_0, ...)$
 - Simplified SU(3)-flavour expansions [arXiv:1102.5300 (PRD)]
 - Kaon mass approached its physical value from below (better convergence of SU(3) ChPT?
 A. Schäfer (Wed, 5D, 08:50)

Simulation parameters

	$\beta = 5.50, \kappa_0 = 0.12090$								
				(X_{π})					
	κ_l	κ_s	$N_S^3 \times N_T$	$a[{ m fm}]$	$m_{\pi} [{ m MeV}]$	$m_K [{ m MeV}]$	$m_{\pi}L$		
	0.120830	0.121040	$24^3 \times 48$		448	391	4.64	#	
	0.120900	0.120900	$24^3 \times 48$		411	411	4.27	#	
	0.120950	0.120800	$24^3 \times 48$	0.083	382	424	3.99	#	
	0.121000	0.120700	$24^3 \times 48$		350	438	3.65	#	
	0.121040	0.120620	$24^3 \times 48$		324	448	3.38	#	
-	0.120900	0.120900	$32^3 \times 64$		411	411	5.59	Ī	
	0.121040	0.120620	$32^3 \times 64$	0.083	319	450	4.32		
	0.121095	0.120512	$32^3 \times 64$		276	464	3.72		
	0.121145	0.120413	$32^3 \times 64$		231	480	3.10		
	0.121166	0.120371	$48^3 \times 96$	0.083	205	485	4.11	*	
-	0.122810	0.122810	$32^3 \times 64$	0.060	411	411	3.85	_	
	0.122810	0.122810	$48^3 \times 96$	0.060	411	411	5.77	*	

Poster by A. Cooke: Results for more extensive set of observables + SU(3)_f breaking expansions

* Currently running

$m_{\pi} = 280 \; [\text{MeV}], \; 32^3 \times 64$

 $F_1(Q^2)$

"

$$m_{\pi} = 280 \; [\text{MeV}], \; 32^3 \times 64$$

PRD 84, 074507 (2011) [arXiv:1106.3580]

Kelly"
$$F_1(Q^2) = \frac{F_1(0)}{(1 + c_{12}Q^2 + c_{14}Q^4)}$$

 $F_1(Q^2)$

$$m_{\pi} = 280 \; [\text{MeV}], \; 32^3 \times 64$$

Dipole:
$$\frac{\mu}{(1+Q^2/M^2)^2}$$

 $G_M(Q^2)$

Quark Sectors

Hyperon Charge Radii

Hyperon Charge Radii

Fit using Finite Range Regularised ChPT by Phiala Shanahan

Hyperon Charge Radii

Fit using Finite Range Regularised ChPT by Phiala Shanahan

Hyperon Magnetic Moments

Hyperon Axial Charges

Hyperon Axial Charges

Important for low-energy effective field theory description of octet baryons

 $g_{A NN} = F + D, \qquad g_{A \Xi \Xi} = F - D, \qquad g_{A \Sigma \Sigma} = F,$ $g_{A \Lambda \Xi} = F - \frac{1}{3}D, \qquad g_{A \Sigma \Xi} = F + D,$ $g_{A \Lambda N} = F + \frac{1}{3}D, \qquad g_{A \Sigma N} = F - D, \qquad g_{A \Lambda \Sigma} = D.$

• SU(3)_f

- D and F enter chiral expansion of every baryonic quantity (e.g. masses, hyperon semi-leptonic decays, B-B' scattering phase shifts, ...)
- Poorly (or not at all) determined experimentally
- Quark Model
 F=0.46
 , D=0.68
 [K.-S.Choi, 1005.0337]

 Fits to Hyperon beta decay
 F=0.46
 , D=0.8
 [Close & Roberts, PLB316, 165 (1993)]

 ChPT, Large Nc predicts
 $0.3 \le g_{\Sigma\Sigma} \le 0.55$ $0.18 \le -g_{\Xi\Xi} \le 0.36$

Hyperon Spin Content

- Proton "Spin Crisis": only 33(3)(5)% of the proton spin carried by quarks
- Is this suppression a property of the nucleon, or a universal feature?
- Do we observe SU(3)_f breaking effects

$$\begin{split} F_{1} &\equiv \frac{1}{\sqrt{3}} (A_{\bar{N}\eta N} - A_{\bar{\Xi}\eta \Xi}) = 2f - \frac{2}{\sqrt{3}} s_{2} \delta m_{l} \\ F_{2} &\equiv (A_{\bar{N}\pi N} + A_{\bar{\Xi}\pi \Xi}) = 2f + 4s_{1} \delta m_{l} \\ F_{3} &\equiv A_{\bar{\Sigma}\pi \Sigma} = 2f + (-2s_{1} + \sqrt{3}s_{2}) \delta m_{l} \\ F_{4} &\equiv \frac{1}{\sqrt{2}} \Re(A_{\bar{\Sigma}K\Xi} - A_{\bar{N}K\Sigma}) = 2f - 2s_{1} \delta m_{l} \\ F_{5} &\equiv \frac{1}{\sqrt{3}} \Re(A_{\bar{\Lambda}K\Xi} - A_{\bar{N}K\Lambda}) = 2f + \frac{2}{\sqrt{3}} (\sqrt{3}s_{1} - s_{2}) \delta m_{l} \,. \end{split}$$

A. Cooke '13 poster, Latt'12, 1212.2564 $f = \frac{1}{\sqrt{2}}F$

Nucleon Axial Charge, gA

- Z_A almost complete (0.85-0.9)
- Cancels in ratio g_A/f_{π}
- Compare with N_f=2 [QCDSF: 1302.2233]

Quark Spin Contributions (Unrenormalised)

Quark Spin Contributions

SU(3)_f Expansions

A. Cooke '13 poster, Latt'12, 1212.2564

$$F_{1} \equiv \frac{1}{\sqrt{3}} (A_{\bar{N}\eta\bar{N}} - A_{\bar{\Xi}\eta\bar{\Xi}}) = 2f - \frac{2}{\sqrt{3}} s_{2} \delta m_{l} \qquad \pi = \frac{1}{\sqrt{2}} (\bar{u}\gamma u - \bar{d}\gamma d)$$

$$F_{2} \equiv (A_{\bar{N}\pi\bar{N}} + A_{\bar{\Xi}\pi\bar{\Xi}}) = 2f + 4s_{1} \delta m_{l} \qquad \pi = \frac{1}{\sqrt{2}} (\bar{u}\gamma u + \bar{d}\gamma d)$$

$$F_{3} \equiv A_{\bar{\Sigma}\pi\bar{\Sigma}} = 2f + (-2s_{1} + \sqrt{3}s_{2}) \delta m_{l} \qquad \eta = \frac{1}{\sqrt{6}} (\bar{u}\gamma u + \bar{d}\gamma d - 2s\gamma s)$$

$$F_{4} \equiv \frac{1}{\sqrt{2}} \Re(A_{\bar{\Sigma}K\bar{\Xi}} - A_{\bar{N}K\bar{\Sigma}}) = 2f - 2s_{1} \delta m_{l}$$

$$F_{5} \equiv \frac{1}{\sqrt{3}} \Re(A_{\bar{\Lambda}K\bar{\Xi}} - A_{\bar{N}K\bar{\Lambda}}) = 2f + \frac{2}{\sqrt{3}} (\sqrt{3}s_{1} - s_{2}) \delta m_{l}.$$

Semileptonic Form Factors

- Provides an alternative method to K_{I3} for determining $|V_{us}|$
 - Using the experimental value for

$$|V_{us}f_1(0)|^2 \left(1+3 \left|\frac{g_1(0)}{f_1(0)}\right|^2\right)$$

• Obtain f_1 and g_1/f_1 from lattice matrix elements

$$\langle b(p')|V_{\mu}(x) + A_{\mu}(x)|B(p)\rangle = \overline{u}_b(p')(\mathcal{O}^V_{\mu}(q) + \mathcal{O}^A_{\mu}(q))u_B(p)e^{iq\cdot x}$$

$$\mathcal{O}^{V}_{\mu}(q) = f_1(q^2)\gamma_{\mu} + f_2(q^2)\sigma_{\mu\nu}\frac{q_{\nu}}{M_b + M_B} + f_3(q^2)i\frac{q_{\mu}}{M_b + M_B}$$

$$\mathcal{O}^{A}_{\mu}(q) = g_{1}(q^{2})\gamma_{\mu}\gamma_{5} + g_{2}(q^{2})\sigma_{\mu\nu}\frac{q_{\nu}}{M_{b} + M_{B}}\gamma_{5} + g_{3}(q^{2})i\frac{q_{\mu}}{M_{b} + M_{B}}\gamma_{5}$$

$$f_0(q^2) = f_1(q^2) + \frac{q^2}{m_{\Sigma}^2 - m_n^2} f_3(q^2)$$

[See also S. Sasaki, Fri, 10D, 18:10]

 $\rightarrow b\ell\nu$

 $m_{\pi} = 319 \; [\text{MeV}], \; 32^3 \times 64$

 $\Sigma^- \to n\ell\nu_\ell$

 $m_{\pi} = 319 \; [\text{MeV}], \; 32^3 \times 64$

 $m_{\pi} = 205 \; [\text{MeV}], \; 48^3 \times 96$

 $\Sigma^- \to n\ell\nu_\ell$

$$m_{\pi} = 320 \; [\text{MeV}], \; 32^3 \times 64$$

 $\Xi^0 \to \Sigma^+ e^- \bar{\nu}_e$

$$m_{\pi} = 320 \; [\text{MeV}], \; 32^3 \times 64$$

 $\Xi^0 \to \Sigma^+ e^- \bar{\nu}_e$

Hyperon Semileptonic Form Factors S.Sasaki 1209.6115 $\Xi^0 \to \Sigma^+ e^- \bar{\nu}_e$ 1.10 $\Sigma^- \to n\ell\nu_\ell$ 1.10 1.05 1.05 $f_0^{[]^0} \!\rightarrow\! \Sigma^+$ $f_0^{\Sigma^-} o n$ 1.00 1.00 0.95 0.95 ¥ 0.90 0.90 Very Preliminary! 0.85 0.4 0.6 0.8 1.0 1.2 $0.6 0.8 m_{\pi}^2 / X_{\pi}^2$ 0.2 0.4 m_{π}^2 / X_{π}^2 1.10 1.10 1.05 1.05 $f_1^{[\tt I]^0} \!\rightarrow\! \Sigma^+$ $f_1^{\Sigma^-} o n$ 1.00 1.00 ¥ 0.95 0.95 ł 0.90 0.90 0.85^L 0.85^{L} 0 2 04 06 08 10 1 2 0 2 06 08 1 2 0410

Summary

- Hyperon electromagnetic form factors
 - Environmental dependence in radii & magnetic moments
- Hyperon axial charges and spin content
 - g_A/f_{π} agrees with N_f=2
 - SU(3)_f breaking effects in quark spin contributions
 - "Spin crisis" not so severe for, e.g. Ξ
- Hyperon semileptonic decays
 - Results for $f_0(0)=f_1(0)$ can now be combined with $\exp|V_{us}f_1(0)|^2$ to determine $|{\rm V}_{\rm us}|$
 - also need to determine

$$V_{us}f_1(0)|^2\left(1+3\left(\frac{g_1(0)}{f_1(0)}\right)^2\right)$$

SU(3)_f breaking expansions