

B, B_s , K and π weak matrix elements with physical light quarks

Rachel Dowdall University of Cambidge HPQCD collaboration

with C. Davies, R. Horgan, G.P. Lepage, C. McNeile, C. Monahan, J. Shigemitsu

B, B_s, K and π weak matrix elements with physical light quarks Yet another talk on decay constants

Motivation

 Errors in decay constants with light quarks dominated by chiral extrapolation (or ambiguities in chiral fit choice)

- ▶ Linear, NLO, NNLO, partially quenched, staggered, SU(2) vs SU(3)
- Pion mass cut?

Motivation

 Errors in decay constants with light quarks dominated by chiral extrapolation (or ambiguities in chiral fit choice)

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

- ▶ Linear, NLO, NNLO, partially quenched, staggered, SU(2) vs SU(3)
- Pion mass cut?
- Physical point results will make errors better and more robust
- Flavour physics [A. El-Khadra talk]
 - f_{B_s} used in rate for $B_s \to \mu^+ \mu^-$
 - f_{B^+} for $B \to \tau \nu$
 - Ratios used in CKM unitarity tests
- Precision scale determination (w_0, r_1) , using f_{π}

Motivation

- Errors in decay constants with light quarks dominated by chiral extrapolation (or ambiguities in chiral fit choice)
 - Linear, NLO, NNLO, partially quenched, staggered, SU(2) vs SU(3)
 - Pion mass cut?
- Physical point results will make errors better and more robust
- Flavour physics [A. El-Khadra talk]
 - f_{B_s} used in rate for $B_s \to \mu^+ \mu^-$
 - f_{B^+} for $B \to \tau \nu$
 - Ratios used in CKM unitarity tests
- Precision scale determination (w_0, r_1) , using f_{π}

Contents

First decay constant results from HPQCD $N_f = 2 + 1 + 1$ program

ション 小田 マイビット ビックタン

- f_B, f_{B_s} and f_{B_s}/f_B with NRQCD-HISQ [arXiv:1302.2644]
- f_K/f_π with HISQ [arXiv:1303.1670]

HISQ $N_f = 2 + 1 + 1$ ensembles [MILC collaboration]

Set	β	<i>a</i> (fm)	M_{π} (MeV)	L (fm)	$L/a \times T/a$	n _{cfg}
1	5.8	0.15	300	2.5	16×48	1020
2	5.8	0.15	215	3.7	24×48	1000
3	5.8	0.15	130	4.8	32×48	1000
4	6.0	0.12	300	3.0	24×64	1052
5	6.0	0.12	215	3.9	32×64	1000
6	6.0	0.12	130	5.8	48×64	1000
7	6.3	0.09	300	2.9	32×96	1008
8	6.3	0.09	130	5.6	64×96	621

- 3 physical point ensembles
- Large volumes
- Well tuned quark masses
- Bottomonium/B spectra have good agreement with expmt [see backups]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Scale setting

- Compared scale from $\Upsilon(2S 1S)$, w_0 , $t_0^{1/2}$ and r_1
- Determined w₀/a with Wilson flow (binned 12 adjacent cfgs) [Lüscher, BMW '12]
- Obtain $w_0=0.1715(9)$ fm (later slides), BMW have $w_0 = 0.1755(18)$ fm
- Good agreement between f_{π} , $\Upsilon(2S 1S)$ for setting overall scale

We use $\Upsilon(2S - 1S)$ for f_B and w_0 (with f_{π}) for f_K

B-meson decay constants

《曰》 《聞》 《臣》 《臣》 三臣

Analysis

- Improved NRQCD and HISQ actions [arXiv:1110.6887]
- ~32k wall source correlators per ensemble, 3 smearing functions
- ► 1/mb correction and 1-loop renormalisation for vector current [C.Monahan plenary talk]

Two independent analyses: chiral (8 ensembles), phys pt only (3 ensembles)

Simultaneous 1-loop SU(2) HM χ PT chiral fit to $M_{B_s} - M_B$, f_B , f_{B_s} and ratio

$$\Phi_{s} = f_{B_{s}} \sqrt{M_{B_{s}}} = \Phi_{s0} (1.0 + b_{s} M_{\pi}^{2} / \Lambda_{\chi}^{2})$$
(1)

$$\Phi = f_B \sqrt{M_B} = \Phi_0 \left(1.0 + b_I \frac{M_\pi^2}{\Lambda_\chi^2} + \frac{1 + 3g^2}{2\Lambda_\chi^2} \left(-\frac{3}{2} I(M_\pi^2) \right) \right)$$
(2)

- Finite vol. included via chiral logs
- Discretisation term $(1 + d_1(\Lambda a)^2 + d_2(\Lambda a)^4)$
 - *d_i* allowed mild *am_b* dependence
- Prior of 0.5(5) on g_{B*Bπ}
- Stable under changes to priors, adding more terms etc
- Consistent results with SHM χ PT fit
- Evaluate fit at fictional $\bar{u}u$ pion mass using $m_u = 0.65(9)m_l$ (2 MeV effect)

Consistent results from chiral and phys. pt fits,

Error budget

Allowed 2-loop error of 10×1 -loop renormalisation

Error %	Φ_{B_s}/Φ_B	$M_{B_s} - M_B$	Φ_{B_s}	Φ_B
EM:	0.0	1.2	0.0	0.0
a dependence:	0.01	0.9	0.9	0.9
chiral:	0.01	0.2	0.04	0.04
g:	0.01	0.1	0.0	0.01
stat/scale:	0.30	1.2	0.7	0.7
operator:	0.0	0.0	1.3	1.3
relativistic:	0.5	0.5	1.0	1.0
total:	0.6	2.0	2.0	2.0

Error generally dominated by stats or missing higher order corrections

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Light meson decay constants

《曰》 《聞》 《臣》 《臣》 三臣

Analysis

2-point functions:

- 16000 wall source correlators
- Include fictitious $s\bar{s}$ meson η_s
- Additional strange masses on coarsest ensembles
- Bin over 2-4 adjacent cfgs (additional binning has almost no effect)
- Simultaneous multiexponential fit to π , K, η_s 2pt correlators keep correlations

No renormalisation required for HISQ

Chiral/continuum fits:

- ► Remove lattice spacing with w_0/a , i.e. $w_0 f_{\pi}$, $w_0 f_K$, ...
- w_0 is a parameter in the fit (prior 0.1755(175))
- M_{π} , M_{K} used to fix quark masses, $f_{\pi^{+}}$ sets the scale

Complementary to MILC analysis with physical point data only

Chiral fit

Physical light quarks $\implies \chi PT$ only used for small quark tunings

► Bayesian fit with SU(3) NLO PQXPT [Sharpe & Shoresh]

$$f_{\rm NLO}(x_a, x_b, x_\ell^{\rm sea}, x_s^{\rm sea}, L) + \delta f_{\chi} + \delta f_{\rm lat}.$$
(3)

(4)

- Express \chi PT in terms of meson masses
- Subtract 1-loop chiral correction to remove f.vol

$$x_{\ell} = rac{M_{0,\pi}^2}{\Lambda_{\chi}^2}, \ \ x_s = rac{2M_{0,K}^2 - M_{0,\pi}^2}{\Lambda_{\chi}^2}$$

- Also compared with Staggered χ PT, consistent results
- Plus higher orders...

Higher order corrections

Generic higher order correction terms:

$$\begin{split} \delta f_{\chi} &\equiv c_{2a}(x_a + x_b)^2 + c_{2b}(x_a - x_b)^2 + c_{2c}(x_a + x_b)(2x_{\ell}^{\text{sea}} + x_s^{\text{sea}}) \\ &+ c_{2d}(2x_{\ell}^{\text{sea}} + x_s^{\text{sea}})^2 + c_{2e}(2x_{\ell}^{\text{sea}2} + x_s^{\text{sea}2}) + c_{3a}(x_a + x_b)^3 \\ &+ c_{3b}(x_a + x_b)(x_a - x_b)^2 + c_{3c}(x_a + x_b)^2(2x_{\ell}^{\text{sea}} + x_s^{\text{sea}}) \\ &+ c_4(x_a + x_b)^4 + c_5(x_a + x_b)^5 + c_6(x_a + x_b)^6 \end{split}$$

Priors of 0(1)

Discretisation corrections

$$\delta f_{\text{lat}} \equiv \sum_{n=1}^{4} d_n \left(\frac{a\Lambda}{\pi}\right)^{2n} \\ d_n = d_{n,0} + d_{n,1a}(x_a + x_b) + d_{n,1b}(2x_\ell^{\text{sea}} + x_s^{\text{sea}}) + d_{n,1c}(x_a + x_b)^2, \quad (5)$$

Allowed to depend on quark masses (cf. $S_{\chi}PT$)

▶ Priors 0(1). Scale set to $\Lambda = 1.8$ GeV, fit implies much lower scale.

Finite volume

а	m_{s}/m_{ℓ}	L	$M_{\pi}L$	$\Delta_{\rm vol} f_{\pi}$	$\Delta_{\rm vol} f_K$	$\Delta_{\mathrm{vol}} f_{\eta_s}$
0.15 fm	5.3	2.5 fm	3.8	1.24(23)%	0.50(9)%	0.10(0)%
0.15 fm	10.6	3.7 fm	4.0	0.38(7)%	0.12(2)%	0.00(0)%
0.15 fm	26.7	4.8 fm	3.3	0.43(8)%	0.13(2)%	0.00(0)%
0.12 fm	5.0	3.0 fm	4.6	0.37(7)%	0.14(3)%	0.01(0)%
0.12 fm	10.0	3.9 fm	4.3	0.24(5)%	0.08(1)%	0.00(0)%
0.12 fm	27.6	5.8 fm	3.9	0.15(3)%	0.05(1)%	0.00(0)%
0.091 fm	4.9	2.9 fm	4.5	0.41(8)%	0.16(3)%	0.02(0)%
0.088 fm	30.0	5.6 fm	3.7	0.21(4)%	0.07(1)%	0.00(0)%

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Calculated numerically in NLO chiral perturbation theory

- Higher orders allowed with multiplicative prior of 1 ± 0.33
- $\Delta_{\text{vol}} f_{\pi} \leq 0.5\%$ on all but one ensemble
- Negligible in final error budget

Results

Evaluate fit at
$$\pi^+$$
, K^+ (see backups)
 $f_{K^+}/f_{\pi^+} = 1.1916(21)$
 $f_{K^+} = 155.37(34) \text{ MeV}$
 $M_{\eta_s}^2/(2M_K^2 - M_\pi^2) = 1.0063(64)$
 $f_{\eta_s}/(2f_K - f_\pi) = 0.9997(17)$
 $w_0 = 0.1715(9) \text{ fm}$

$$|V_{us}| = 0.22564(28)_{{
m Br}({\cal K}^+)}(20)_{{
m EM}}(40)_{{
m latt}}(5)_{V_{ud}}$$

Test of first row unitarity, V_{ud} now needs to be improved:

$$1 - |V_{ud}|^2 - |V_{us}|^2 - |V_{ub}|^2 = -0.00009(51)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへで

Results

Consistent results from three scale setting methods

- $\sqrt{t_0}$ has noticably larger disretisation errors
- Wilson flow easier to calculate than r₁

Errors

	f_{K^+}	f_{K^+}/f_{π^+}	m_{η_s}	<i>w</i> ₀
statistics + svd cut	0.13%	0.13%	0.28%	0.26%
chiral extrapolation	0.03	0.03	0.04	0.15
$a^2 \rightarrow 0$ extrapolation	0.10	0.10	0.15	0.27
finite volume correction	0.01	0.01	0.01	0.02
w ₀ /a uncertainty	0.02	0.02	0.02	0.28
f_{π^+} experiment	0.13	0.03	0.07	0.19
m_u/m_d uncertainty	0.07	0.07	0.00	0.00
Total	0.22%	0.18%	0.33%	0.54%

- "Statistical" error comes largely from SVD cut needed with correlations
- Fit without correlations has much smaller error
- Artificially inflating the errors (×8) with no SVD cut gives same result

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Summary

Heavy and light decay constants at the physical point

$$\begin{split} f_{B^+} &= 0.184(4) \text{ GeV}, \qquad f_{B_s} = 0.224(4) \text{ GeV}, \qquad f_{B_s}/f_{B^+} = 1.217(8), \\ f_{K^+}/f_{\pi^+} &= 1.1916(21), \qquad f_{K^+} = 155.37(34) \text{ MeV}, \qquad w_0 = 0.1715(9) \text{ fm} \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Chiral fit error negligible
- Scale dependence small for both
- NRQCD limited by higher order operators and radiative corrections

Summary

Heavy and light decay constants at the physical point

$$\begin{split} f_{B^+} &= 0.184(4) \text{ GeV}, \qquad f_{B_s} = 0.224(4) \text{ GeV}, \qquad f_{B_s}/f_{B^+} = 1.217(8), \\ f_{K^+}/f_{\pi^+} &= 1.1916(21), \qquad f_{K^+} = 155.37(34) \text{ MeV}, \qquad w_0 = 0.1715(9) \text{ fm} \end{split}$$

- Chiral fit error negligible
- Scale dependence small for both
- NRQCD limited by higher order operators and radiative corrections
- Other HPQCD results on the HISQ ensembles:
 - Quark condensates [C.McNeile talk]
 - Radiatively improved hyperfine splittings [C.Davies poster]
 - $B \rightarrow \pi$ at zero recoil at the physical point [C.Davies poster]
 - Pion form factor and charge radius [J.Koponen talk]
 - Entirely non-perturbative mNPR [B.Chakraborty talk]

In progress:

- Radiative decays in bottomonium [C.Hughes poster]
- B-meson bag parameters with NRQCD-HISQ

◆□> ◆圖> ◆理> ◆理> 二百一

・ロト ・母 ト ・ヨ ト ・ヨ ・ つくで

Improved NRQCD action

► v⁴ NRQCD action, radiative corrections to Wilson coefficients

$$\begin{aligned} \mathbf{a}H &= \mathbf{a}H_0 + \mathbf{a}\delta H;\\ \mathbf{a}H_0 &= -\frac{\Delta^{(2)}}{2am_b},\\ \mathbf{a}\delta H &= -c_1\frac{(\Delta^{(2)})^2}{8(am_b)^3} + c_2\frac{i}{8(am_b)^2} \left(\nabla \cdot \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \cdot \nabla\right)\\ &- c_3\frac{1}{8(am_b)^2} \sigma \cdot \left(\tilde{\nabla} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \tilde{\nabla}\right)\\ &- c_4\frac{1}{2am_b} \sigma \cdot \tilde{\mathbf{B}} + c_5\frac{\Delta^{(4)}}{24am_b}\\ &- c_6\frac{(\Delta^{(2)})^2}{16n(am_b)^2}.\end{aligned}$$

・ロト・個ト・モート ヨー・シタウ

(6)

f_B current matching

Lattice currents

$$J_0^{(0)} = \bar{\Psi}_q \gamma_5 \gamma_0 \Psi_Q \tag{7}$$

$$J_0^{(1)} = \frac{-1}{2m_b} \bar{\Psi}_q \gamma_5 \gamma_0 \gamma \cdot \nabla \Psi_Q \tag{8}$$

$$J_0^{(2)} = \frac{-1}{2m_b} \bar{\Psi}_q \gamma \cdot \overleftarrow{\nabla} \gamma_5 \gamma_0 \Psi_Q. \tag{9}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Related to the full QCD current through $O(\alpha_s, \alpha_s \Lambda_{\rm QCD}/m_b)$ by

$$\langle \mathbf{A}_0 \rangle = (1 + \alpha_s z_0) \left(\langle J_0^{(0)} \rangle + (1 + \alpha_s z_1) \langle J_0^{(1)} \rangle + \alpha_s z_2 \langle J_0^{(2)} \rangle \right) \tag{10}$$

- Coupling $\alpha_V(2/a)$, z_i calculated to 1-loop in pert theory
- Overall renormalisation is small

▲ロト▲御ト▲臣ト▲臣ト 臣 の父(?)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Isospin violation

- Evaluate fit at appropriate point for π^+, K^+
- Noticable shift with small stat errors $(f_K/f_{K^+} = 1.0024(6))$ [N.Tantalo talk]
- For Kaons,

$$(M_{\kappa}^{\rm phys})^2 \equiv \frac{1}{2} \left[(M_{\kappa^+}^2 + M_{\kappa^0}^2) - (1 + \Delta_E) (M_{\pi^+}^2 - M_{\pi^0}^2) \right].$$
(11)

ション 小田 マイビット ビックタン

using $\Delta_E = 0.65(50)$

- These give $m_l = (m_u + m_d)/2$
- For K^+ , we need $m_u = 0.65(9)m_l$
- Evaluate fit at $m_{\pi} = \sqrt{0.65(9)} M_{\pi}^{\rm phys}$ with $2M_{K}^2 m_{\pi}^2$ fixed

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ ● ● ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 $\mathcal{O} \mathcal{Q} \mathcal{Q}$