

Maarten Golterman (IFAE, Barcelona and San Francisco State University)

with Yigal Shamir, Phys.Rev. D87 (2013) 054501

Outline:

non-perturbative gauge fixing: equivariant BRST symmetry (review)

spontaneous symmetry breaking in a topological field theory?

phase diagram of equivariantly gauge-fixed SU(2) Yang-Mills (speculation)

Equivariant gauge fixing

• Standard BRST gauge fixing: insert into $Z = \int [dU] \exp[-S(U)]$

constant =
$$Z_{\rm gf}(U,\xi) = \int [d\phi][dc][d\overline{c}] \exp[-S_{\rm gf}(U^{\phi},c,\overline{c})]$$

 $Z_{
m gf}(U,\xi)$ independent of U and gf parameter ξ , but ${
m constant}=0$ U^ϕ is gauge transform of U (Neuberger '87)

- equivariant gauge fixing: gauge fix only the coset SU(2)/U(1)
 - $C = C_1 \tau_1/2 + C_2 \tau_2/2$, etc. coset valued: sC = 0 instead of $sC = -iC^2$
 - $s^2(\text{field}) = \delta_{U(1)}(\text{field})$: "equivariant" nilpotency
 - $-S_{\rm gf} = \frac{1}{\xi g^2} \operatorname{tr} \left(F(U^{\phi}) \right)^2 + 2 \operatorname{tr} \left(\overline{C} M(U^{\phi}) C \right) 2\xi g^2 \operatorname{tr} \left(C^2 \overline{C}^2 \right)$
 - choose $F(U) \sim D_{\mu}(A)W_{\mu}$, $V_{\mu} = \frac{1}{2} \left(W_{\mu}^{1} \tau_{1} + W_{\mu}^{2} \tau_{2} + A_{\mu} \tau_{3} \right)$

- Invariance theorem: $\langle \mathcal{O}(\mathcal{U}) \rangle_{\mathrm{unfixed}} = \langle \mathcal{O}(\mathcal{U}) \rangle_{\mathrm{eBRST}}$ (Schaden'98, G&S '04) $Z_{\mathrm{gf}}(U,\xi g^2) \neq 0$ does not depend on U, $\tilde{g}^2 = \xi g^2$: topological field theory
- Reduced model: take U pure gauge (on trivial orbit, i.e., g o 0)

$$Z_{\rm gf}(1,\tilde{g}^2) = \int [d\phi][dC][d\overline{C}] \exp\left[-S_{\rm gf}(1^{\phi},C,\overline{C})\right]$$
$$S_{\rm gf} = \frac{1}{\xi g^2} \operatorname{tr}\left(F(1^{\phi})\right)^2 + 2\operatorname{tr}\left(\overline{C}M(1^{\phi})C\right) - 2\xi g^2\operatorname{tr}\left(C^2\overline{C}^2\right)$$

with $1^\phi = \phi_x \phi_{x+\mu}^\dagger$, keep $\tilde{g}^2 = \xi g^2$ fixed

This is a strongly interacting theory with asymptotically free coupling $ilde{g}$

• Symmetries: $\phi_x \to h_x \phi_x g^\dagger$, $s\phi = -iC\phi$, etc.; still TFT \longrightarrow ? $U(1)_L$ $SU(2)_R$ (local) (global) ($U(1): \phi$ coset valued)

- Order parameter: $\phi^{\dagger}\tau_{3}\phi$ (invariant under unfixed $U(1)_{L}$) $\langle \phi^{\dagger}\tau_{3}\phi \rangle \neq 0$ breaks $SU(2)_{R} \rightarrow U(1)_{R}$
- Effective potential for order parameter:

$$\exp(-V_{\text{eff}}(\tilde{A})) = \int [d\phi][dC][d\overline{C}] \,\delta\left(\tilde{A} - \frac{1}{V}\sum_{x}\phi_{x}^{\dagger}\tau_{3}\phi_{x}\right) \,\exp(-S_{\text{gf}})$$

But, in view of $dZ_{\rm gf}/d\tilde{g}=0$, can $V_{\rm eff}(\tilde{A})$ be non-trivial? In other words, can SSB ever take place in a TFT?

First, consider a toy model

A toy model: zero-dimensional TFT (aka integral)

$$Z = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} d\phi \int dc d\overline{c} \exp[-f^2(\phi)/4 + \overline{c}f'(\phi)c]$$

b(aby)BRST: $s\phi=c\;,\;\;sc=0\;,\;\;s\bar{c}=f(\phi)/2$ (onshell form)

Of course,
$$Z = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} d\phi \, f'(\phi) \exp[-f^2(\phi)/4] = 1$$
 $(f \to \pm \infty \text{ for } x \to \pm \infty)$

TFT because Z does not depend on $f(\phi)$

Choose $f(\phi)=rac{1}{\lambda}\left(\phi^3-v^2\phi
ight)$ then model has bBRST and Z_2 symm. $\phi o -\phi$

classical minima: $\phi=0$ (Z_2 unbroken) , $\phi=\pm v$ (Z_2 broken)

However: always $\langle \phi \rangle = 0$ because of the invariance theorem!

Now recall how to study SSB:

Now recall how to study SSB:

- turn on seed $S_{\rm seed} = -\epsilon \phi$
- then take $V o \infty$
- only then take $\epsilon \to 0$

seed breaks bBRST and Z_2 and selects minimum $\phi=v$, dominates saddlepoint approx.

0.06 0.05 0.04 0.03 0.02 0.01 1 2

Find:
$$Z_v=1$$
 to all orders in λ
$$\langle \phi \rangle_v = v \left(1-\frac{3}{4}\frac{\lambda^2}{v^6}+\dots\right) \ \ {\rm breaks} \ \ Z_2 \ {\rm but} \ {\rm not} \ {\rm bBRST}$$

For bBRST to be broken, need $\langle sX \rangle_v \neq 0$ for some X, does not happen

But $\langle \phi \rangle \neq 0$ and non-trivial: Z_2 can be, and is broken!

Back to reduced model: $S_{\text{seed}} = -\text{tr} \left(h \tau_3 \, \phi^{\dagger} \tau_3 \phi \right)$

breaks $SU(2)_R o U(1)_R$ and eBRST symmetries, invariant under $U(1)_{
m gauge}$

- invariance theorem does not apply as long as $h \neq 0$
- whether it applies after $V \to \infty$ and $h \to 0$ is a dynamical question!

Integrate out ghosts in $1/ ilde{g}^2$ expansion, apply mean field to resulting $S_{ ext{eff}}(\phi)$:

- 1st order phase transition at $\tilde{g}=\tilde{g}_c$ with $\langle \phi^\dagger \tau_3 \phi \rangle$ $\begin{cases} =0 \;, \quad \tilde{g}>\tilde{g}_c \\ \neq 0 \;, \quad \tilde{g}<\tilde{g}_c \end{cases}$
- breaks $SU(2)_R \to U(1)_R$, implies massive W, massless photon!
- fate of eBRST: don't know! But (1) $\phi^{\dagger} \tau_3 \phi \neq s(\text{anything})$
 - (2) effective mass term $S_m = m^2 \int d^4x \operatorname{tr} \left(\frac{1}{2} W_\mu^2 + \overline{C}C \right)$ is eBRST invariant

Phase diagram

A confining phase, mass gap

B Higgs phase, no mass gap, massless photon clear phase separation also in full theory

boundaries:

 $\tilde{g}
ightarrow \infty$: gf sector decouples \Rightarrow confinement

 $\tilde{g}
ightarrow 0$: 4-ghost term unimportant ightharpoonup conf.

 $g o \infty$: like analysis gives confinement

Phase diagram

upper diagram: B is lattice artifact

lower diagram: A and B contain

continuum limit

(at point $g = \tilde{g} = 0$)

one-loop RG analysis: (MG & Shamir, 06) associate a scale Λ with g, $\tilde{\Lambda}$ with \tilde{g} $\tilde{\Lambda} \approx \Lambda$, only one scale, confining? $\tilde{\Lambda} \gg \Lambda$, $\tilde{\Lambda}$ dominates, $m_W \sim g\tilde{\Lambda}$?

Questions and conclusions

- 1) Does the new phase exist? Numerical
- 2) Does it extend to $g = \tilde{g} = 0$? Small volume, large N
- 3) Is the continuum limit unitary? Does eBRST remain unbroken?
- 4) What distinguishes two phases microscopically in full theory? In full theory seed should break eBRST (not $SU(2)_R$), biases sum over Gribov copies
- Scenario consistent, SSB can occur in a topological field theory
- If SSB occurs in reduced model, Higgs mechanism unavoidable