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Global Symmetries of Staggered Fermions

Example 1: 4-D, SU(2), fermions in fundamental representation
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FIG. 4: (Color online) Level spacing densities obtained from spectra of the staggered Dirac operator in the adjoint representation
of SU(2) for small �. The numerical data are consistent with the Wigner surmise for the chOE – as expected according to the
symmetry properties of the staggered Dirac operator, see Sec. II B.
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FIG. 5: (Color online) Level spacing densities for eigenvalues within clusters, obtained from spectra of the staggered Dirac
operator in the fundamental representation of SU(2) for increasing �. Agreement with the chSE persists for large �, i.e., close
to the free limit.

between clusters. Our analysis concerns the level spac-
ings of the spectrum (3.2) but not the spacings between
the actual plateau positions, obtained by averaging over
all eigenvalues within a given plateau.

Let us also point out that, in spite of the strong simi-
larities between the data describing the cluster spacings
and the plateau spacings in Fig. 7, they describe correla-
tions on spectral scales that typically di↵er by an order
of magnitude.

V. CONCLUSIONS AND OUTLOOK

We have studied the spectral properties of the stag-
gered Dirac operator DKS when approaching the free
limit for gauge group SU(2), both in the fundamental
and in the adjoint representation. With SU(2) gauge
fields the staggered Dirac operator on the lattice belongs
to a di↵erent symmetry class than the corresponding con-
tinuum operator.

Our numerical analysis revealed that, when the free

I Bruckmann, Keppeler, Panero, Wettig (2008)
I β →∞: splitting of spectrum into three scales (plateaux,

clusters, level spacing)
⇒ statistics on scale of plateaux and clusters: Poisson
⇒ statistics on scale of level spacing: χGSE
I continuum statistics: χGOE!



Global Symmetries of Staggered Fermions

Example 2: 3-D, SU(3), fermions in fundamental representation

Lattice QCD RMT
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Do we have a transition
of global symmetries?

The mechanism of such a transition?

RMT may help to solve the puzzle!



Do we have a transition
of global symmetries?

The mechanism of such a transition?

RMT may help to solve the puzzle!



RMT-applicable Regime: The ε-regime of QCD

I infrared limit of QCD
I large Compton wavelength of Mesons� box size V 1/4 = L
I lattice volume (space-time volume) V →∞

Saddlepoint approximation:
I spontaneous breaking of chiral symmetry

+

Integration over all kinetic modes
(important for applicability of RMT)

⇓
χLagrangian: L(U) =

ΣV
2

tr M(U + U†) + Lcorrection(V ,a,U)



Why 2-D?

I exhibits the same effect in a simpler setting

What is with the Coleman–Mermin–Wagner theorem?

well-known (but still puzzling) effect of spontaneous
breaking of chiral symmetry for quenched 2-D QCD
(eg. Damgaard, Heller, Narayana, Svetitsky (2005,
Schwinger-model))

our guess: integration of all kinetic modes + still small
lattice volume V ( 1010)
(maybe logarithmic divergent in V )

Thouless energy can be still increased by increasing Nc
⇒ RMT applies better
⇒ spontaneous breaking of chiral symmetry



Why 2-D?

I exhibits the same effect in a simpler setting

Coleman–Mermin–Wagner theorem?

I well-known (but still puzzling) effect of spontaneous
breaking of chiral symmetry for quenched 2-D QCD
(eg. Damgaard, Heller, Narayana, Svetitsky (2005,
Schwinger-model))

I our guess: integration over all kinetic modes + still small
lattice volume V (≈ 102)
(maybe logarithmic divergent in V )



Artificial chiral structure

General RMT model: D =

[
0 W
−W † 0

]

Original Classification (Verbaarschot, 90’s):

W is





real,
complex,
quaternion,

Reasons:
other dimensions = other universality classes
(DeJonghe, Frey, Imbo, 2012)

+
Artificial symmetry: Γx

5Tx Γx
5 = −Tx , Γx

5Ty Γx
5 = Ty

⇒ change of the universality class



Artificial chiral structure

General RMT model: D =

[
0 W
−W † 0

]

Original Classification (Verbaarschot, 90’s):

W is





real,
complex,
quaternion,Yesterday

Reasons:
other dimensions = other global symmetries
(DeJonghe, Frey, Imbo, 2012)

+
Artificial symmetry: Γx

5Tx Γx
5 = −Tx , Γx

5Ty Γx
5 = Ty

⇒ change of global symmetries



Let us do some simulations!



Comparison: Lattice Data↔ RMT
2-D & Two colors (SU(2)) & fundamental representation (ψ → Uµψ)

odd-odd
=

level rep.: |λi − λj |
+

USp(2Nf)× USp(2Nf)
↓

USp(2Nf)
=

2-D continuum QCD

odd-even
=?

level rep.: |λi − λj |2
+

USp(4Nf)
↓

USp(2Nf)× USp(2Nf)
=

3-D continuum QCD

even-even
=

level rep.: |λi − λj |4
+

SU(4Nf)
↓

SO(4Nf)
=

2-D staggered fermions



Comparison: Lattice Data↔ RMT
2-D & Three colors (SU(3)) & adjoint representation (ψ → UµψU−1

µ )

odd-odd
=

level rep.: |λi − λj |4
+

SO(2Nf)× SO(2Nf)
↓

SO(2Nf)
=

2-D continuum QCD

odd-even
=

level rep.: |λi − λj |2
+

SO(4Nf)
↓

SO(2Nf)× SO(2Nf)
=

3-D continuum QCD

even-even
=

level rep.: |λi − λj |
+

SU(4Nf)
↓

Sp(4Nf)
=

2-D staggered fermions



Comparison: Lattice Data↔ RMT
2-D & Three colors (SU(3)) & fundamental representation (ψ → Uµψ)

odd-odd & even-even
=

level rep.: |λi − λj |2
+

SU(2Nf)× SU(2Nf)→ SU(2Nf)
=

2-D continuum QCD

odd-even
=

level rep.: |λi − λj |2
+

SU(2Nf)→ SU(Nf)× SU(Nf)
=

3-D continuum QCD



What is with the action?

SYM −→Wilson action: S = β(a)
∑

µ 6=ν
tr TµTνT−1

µ T−1
ν

= Wilson loop:

Competition between

I Haar measure of Uµ(x)

I strong coupling limit: β → 0
I independent Tµ

←→
I Wilson action: eS

I weak coupling limit: β →∞
⇒ path independence: TµTν = TνTµ



What is happening?

strong coupling

independent Tµ
←→

weak coupling

TµTν = TνTµ

How does the symmetry of Dstag change?

First RMT-Model by James Osborn (2011), 4-D staggered

Is there a simpler model?



What is happening?

strong coupling

independent Tµ
←→

weak coupling

TµTν = TνTµ

How does the symmetry of Dstag change?

RMT-Model by Osborn (2004/2011), fundamental 4-D staggered
3
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TABLE I. Mappings from corrections to the chiral RMT [T in Eq. (??)] to corrections to the chiral Lagrangian [V in Eq. (??)].
The Gaussian weight is given by exp(�ST ). The first two types of taste breaking terms are similar to the ones appearing in [?
]. The last terms are new and will generate the two-trace terms.

where T incorporates the taste breaking terms considered
below.

In [? ] we considered only the case of ⌫ = 0; fur-
thermore, the additional terms could only reproduce the
single-trace terms. Here we will consider the extension to
⌫ 6= 0 and will also include the two-trace terms. Similar
work has been done for the Wilson Dirac operator [? ?
].

We start with the dominant term which is typically
found to be the C4 term [? ]. For arbitrary ⌫ we can
write it as

T =
X

µ

 
Aµ 0

0 Bµ

!
⌦ ⇠µ5 (14)

where Aµ and Bµ are Hermitian matrices of size (N+⌫)⇥
(N + ⌫) and N ⇥N , respectively. Note that this also has
a chiral and taste structure similar to the leading taste
breaking term in the expansion in (??). If we choose a
Gaussian weight function for these matrices of the form

exp(��N
X

µ

[
⌦
A2

µ

↵
+
⌦
B2

µ

↵
]) (15)

then one can show that the chiral Lagrangian will get a
correction term (see Appendix ?? for details),

�↵Na2

4�

X

µ

⌦
⇠µ5U⇠µ5U + ⇠µ5U

†⇠µ5U
†↵ . (16)

Upon equating this to the C4 term in the e↵ective La-
grangian [and noting that there is a ⇠5µ in (??)], we get
� = ↵N/2V C4. Note that we require that � > 0 for con-
vergence of the integrals. We could have obtained the
opposite sign in (??) if we multiplied (??) by i; however,
this would make that term Hermitian. Thus the sign of
C4 is determined by the need to have an anti-Hermitian
Dirac operator in (??). We will discuss this issue more
in the context of the two-trace terms.

The C3 term can be handled in a manner similar to
C4. The C1 and C6 terms can be obtained from matrices
of the form

T =

 
0 iX

iX† 0

!
⌦ � (17)

where X is a (N +⌫)⇥N complex matrix. The correction
to the chiral Lagrangian for this term is given in Table
??.

It was pointed out in [? ] that the terms in (??)
could be obtained from a RMT using terms similar to the
ones above, but the corresponding RMT would contain
Hermitian pieces, instead of being strictly anti-Hermitian
as is the case of the staggered Dirac matrix. By writing
those terms in the two-trace form (??), one can now find
a way to add them to the RMT while preserving the
anti-Hermiticity.

To do this we need to make linear combinations of the
terms. For example, we can write the C2V and C5V terms
as

C+
V

4

X

µ

⌦
⇠µ(U + U†)

↵2
+

C�
V

4

X

µ

⌦
⇠µ(U � U †)

↵2
(18)

with

C±
V = (C2V ± C5V )/2 . (19)

We can then linearize each of these terms using a
Hubbard-Stratonovich transformation, such as

e
C

+
V
4 h⇠µ(U+U†)i2 =

Z
d�e�

|C+
V

|
4 [�2�2�sh⇠µ(U+U†)i] (20)

where � is a single real variable and s =
q

C+
V /|C+

V |.
This term now takes the form of a mass term that mixes
the tastes (with a mass matrix ⇠µ|C+

V |�s/⌃0). The C�
V

term likewise gives a �5 mass term. The mappings for
these terms from the RMT to the chiral Lagrangian are
given in the last two rows of Table ??.

Note again that we now must have C±
V < 0 in order

for this term to be anti-Hermitian. The same condition
holds for C±

A . The coe�cients C�
A,V are proportional to

the “hairpin” coe�cients �0A,V which appear in one-loop

results of chiral perturbation theory [? ]. The other com-
binations C+

A,V do not appear in one-loop expressions and
therefore have not yet been determined from lattice simu-
lations. However, the negative sign for C�

A,V is consistent

Is there a simpler model?



Achieved:

I identification of important symmetries and matrix blocks
⇒ classification of the naive Dirac-operator
⇒ mechanism of getting the wrong global symmetries as

continuum QCD

Our goal!

I construction of tractable RMT models (recall the model by
Bialas, Burda, Petersson (2010))

I restriction of low energy constants
I understanding of mechanism when changing global

symmetries
(interplay of Haar measure of gauge group and Wilson
action)



Stay tuned for upcoming battles!
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