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The model and the Haldane conjecture

The action SO(3)(βO(3), θ) of the 2−dimensional (2D) non-linear σ model with a
θ− term in the continuum reads

SO(3)(βO(3), θ) =
1
2
βO(3)

∫
d2x [∂µ~σ(x)]2 − iθSq ,

[A. M. Polyakov (1975); E. Brézin and J. Zinn-Justin (1976)]

being βO(3) the inverse of the coupling constant, θ a real parameter, ~σ(x) a
3−component unit vector and Sq the topological charge given by

Sq =
1

8π

∫
d2x εµνεkmp ∂µσk (x)∂νσm(x)σp(x) .

This model can be related with physical phenomena like, among others:

in condensed-matter physics, superconductivity and quantum Hall effect;
[E. Fradkin (1991)]

in particle physics, asymptotic freedom, instantons and spontaneous generation
of mass in non-Abelian gauge theories.

Christian Torrero A new approach to the 2D σ model with a topological charge



Motivation
The SU(2) principal chiral model

Preliminary results
Conclusions

The model and the Haldane conjecture

The action SO(3)(βO(3), θ) of the 2−dimensional (2D) non-linear σ model with a
θ− term in the continuum reads

SO(3)(βO(3), θ) =
1
2
βO(3)

∫
d2x [∂µ~σ(x)]2 − iθSq ,

[A. M. Polyakov (1975); E. Brézin and J. Zinn-Justin (1976)]

being βO(3) the inverse of the coupling constant, θ a real parameter, ~σ(x) a
3−component unit vector and Sq the topological charge given by

Sq =
1

8π

∫
d2x εµνεkmp ∂µσk (x)∂νσm(x)σp(x) .

This model can be related with physical phenomena like, among others:

in condensed-matter physics, superconductivity and quantum Hall effect;
[E. Fradkin (1991)]

in particle physics, asymptotic freedom, instantons and spontaneous generation
of mass in non-Abelian gauge theories.

Christian Torrero A new approach to the 2D σ model with a topological charge



Motivation
The SU(2) principal chiral model

Preliminary results
Conclusions

The model and the Haldane conjecture

The action SO(3)(βO(3), θ) of the 2−dimensional (2D) non-linear σ model with a
θ− term in the continuum reads

SO(3)(βO(3), θ) =
1
2
βO(3)

∫
d2x [∂µ~σ(x)]2 − iθSq ,

[A. M. Polyakov (1975); E. Brézin and J. Zinn-Justin (1976)]

being βO(3) the inverse of the coupling constant, θ a real parameter, ~σ(x) a
3−component unit vector and Sq the topological charge given by

Sq =
1

8π

∫
d2x εµνεkmp ∂µσk (x)∂νσm(x)σp(x) .

This model can be related with physical phenomena like, among others:

in condensed-matter physics, superconductivity and quantum Hall effect;
[E. Fradkin (1991)]

in particle physics, asymptotic freedom, instantons and spontaneous generation
of mass in non-Abelian gauge theories.

Christian Torrero A new approach to the 2D σ model with a topological charge



Motivation
The SU(2) principal chiral model

Preliminary results
Conclusions

The model and the Haldane conjecture

Main features of the θ−behavior of the model are the following:

at θ = 0, the spectrum exhibits a massive triplet of scalars;
[P. Hasenfratz, M. Maggiore and F. Niedermayer (1990)]

at θ = π, the theory is massless (Haldane conjecture);
[I. Affleck and F. D. M. Haldane (1977)]

in the range 0 < θ < π, the spectrum develops a singlet (to be precise, it is
already present at θ = π) along with the triplet: their masses mS(θ) and mT (θ)

are proportional to (π − θ)
2
3 close to π.

[I. Affleck, D. Gepner, H. J. Schulz and T. Ziman (1989)]

The above scenario has been verified - for the triplet - with different techniques trying to
overcome the sign problem associated with the Sq term.

[W. Bietenholz, A. Pochinsky and U.-J. Wiese (1995); B. Allés and A. Papa (2008)]

Aim of this study is to allow for simulations with real values of θ so to monitor
the behaviour of mS(θ) as well.
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The strategy consists of relating the partition function ZO(3)(βO(3), θ) of the original
theory with the lattice partition function ZSU(2)(β) of the 2D SU(2) principal chiral
model reading

ZSU(2)(β) =

∫ ∏
n

DU(n) exp

β∑
n′

2∑
µ=1

Tr [U(n′)U†(n′ + ~eµ)]

 ,

where β is the (dual) counterpart of βO(3), U(n) ∈ SU(2) and n = (n1, n2) with
n1, n2 ∈ {1, . . . , L}. Periodic boundary conditions will be assumed for the rest of
this presentation.

ZSU(2)(β) can be conveniently rewritten by introducing the link and plaquette variables
V (n, µ) and V (n) defined as

V (n, µ) = U(n)U†(n + ~eµ) ,
n n + ~eµ

and

V (n) = V (n, 1)V (n, 2)V †(n − ~e1, 1)V †(n − ~e2, 2) .
n

1 2 3 4
1

2

3

4
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The SU(2) matrix V (n) can be parametrized as

V (n) = exp[ iλkωk (n)] ,

with [λk , λm] = 2 i εkmpλp and Tr[λkλm] = 2δkm .

With this definitions, the partition function ZSU(2)(β) becomes

ZSU(2)(β) =

∫ ∏
(n,µ)

dV (n, µ) exp

β ∑
(n,µ)

TrV (n, µ)

∏
n′

(∑
r

d(r)χr [V (n′)]

)
,

where the index r labels the representation, d(r) stands for the dimension of the
representation r and χr [V (n)] is the character of V (n) in the representation r .

For future convenience, let’s introduce also the unconstrained SU(2) model defined as

Z (β,R) =

∫ ∏
(n,µ)

dV (n, µ) exp

β ∑
(n,µ)

TrV (n, µ)

∏
n′

sin Rω(n′)
sinω(n′)

.

where ω(n) = [
∑3

k=1 ω
2
k (n)]

1
2 . Here R is a real parameter.
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The continuum limit of the lattice SU(2) principal chiral limit stems from the fact that, in
the limit β → +∞, all link matrices perform small fluctuations around the identity.

[J. Bricmont and J.-R. Fontaine (1981)]

This allows replacing the SU(2) δ−function with the Dirac δ−function, i.e.,

∑
r

d(r)χr [V (n)] −→
3∏

k=1

∫ ∞
−∞

e iαk (n)ωk (n) dαk (n) ,

and the continuum limit is achieved thanks to the following 3-step procedure:

introduce dimensionful vector potentials Ak (n) as ωk (n) = aAk (n) and expand
in powers of the lattice spacing a;

replace the SU(2) invariant measure by a flat measure and extend the
integration region over potentials Ak (n) to the non-compact region
Ak (n) ∈ [−∞,∞];

in the limit a→ 0, finite differences are replaced by derivatives and sums by
integrals.
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After neglecting terms vanishing in the limit a→ 0 and integrating over Ak (n), the
partition function ZSU(2)(β) eventually reads in the continuum

ZSU(2)(β) =

∫ ∞
−∞

3∏
k=1

dαk (x) e−Seff(β) ,

with

Seff(β) =
1
4

∫
d2x ∂µαk (x) Mkm

µν (x) ∂ναm(x)−
1
2

∫
d2x ln[DetM(x)] ,

where

Mkm
µν (x) =

1
β2 + α2(x)

[
δµν

(
βδkm +

1
β
αk (x)αm(x)

)
+ i εµνεkmpαp(x)

]
,

being α2(x) =
∑3

k=1 α
2
k (x) and Det M(x) = β−2[β2 + α2(x)]−2.
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Finally, another change of variables reading

αk (x) = R(x) σk (x)

( 3∑
k=1

σ2
k (x) = 1

)
,

completes the computation of the continuum limit of ZSU(2)(β): it entails an integration
over R(x) and σk (x).

However, it is much interesting to fix R(x) to a constant value R: besides leading to the
a→ 0 limit of the unconstrained SU(2) principal chiral model, this choice allows for
relating the latter to the non-linear σ model with a θ−term since in the continuum

ZO(3)(βO(3), θ) = [C(β,R)]L
2

Z (β,R) ,

with

C(β,R) =
β

R

(
R2 + β2

)
e−2β .

The relations between the parameters are given by

βO(3) =
β

2
R2

R2 + β2
, θ = 2πR

R2

R2 + β2
.
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Thus, the procedure to numerically determine a given observable O(σ) of the
non-linear σ model is well known:

“translate" O(σ) into its counterpart Õ(V ) with respect to the degrees of
freedom of the SU(2) unconstrained principal chiral model;

tune (β,R) so to keep β large but in such a way that they correspond to the
desired values of (βO(3), θ);

measure Õ(V ) by means of importance sampling and convert back to O(σ).

The algorithm employed in this study is a standard local Metropolis: since the
probability distribution in Z (β,R) is not necessarily positive due to the sine functions, a
change leading to a configuration with negative weight is automatically dismissed.

This approach entails a bias that, however, “goes in the right direction" since, in the
β → +∞ limit, such configurations are exponentially suppressed.
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tune (β,R) so to keep β large but in such a way that they correspond to the
desired values of (βO(3), θ);

measure Õ(V ) by means of importance sampling and convert back to O(σ).

The algorithm employed in this study is a standard local Metropolis: since the
probability distribution in Z (β,R) is not necessarily positive due to the sine functions, a
change leading to a configuration with negative weight is automatically dismissed.

This approach entails a bias that, however, “goes in the right direction" since, in the
β → +∞ limit, such configurations are exponentially suppressed.
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In order to get some unbiased results to compare with, an alternative formulation for
the unconstrained SU(2) principal chiral model has been worked out.

Let’s go back to ZSU(2)(β)

ZSU(2)(β) =

∫ ∏
(n,µ)

dV (n, µ) exp

β ∑
(n,µ)

TrV (n, µ)

∏
n′

(∑
r

d(r)χr [V (n′)]

)
,

and let’s assume a given representation r has been chosen for all SU(2) matrices so
that the partition function Z̃ (β,R) - with R = 2r + 1 - defined as

Z̃ (β,R) =

∫ ∏
(n,µ)

dV (n, µ) exp

β ∑
(n,µ)

TrV (n, µ)

∏
n′
χr [V (n′)] ,

can be introduced.

It can be shown that

Z (β,R) = Z̃ (β,R) ,

when R appearing on the l.h.s. is integer.
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By definition, the character χr [V (n)] reads

χr [V (n)] =
∑̃

n
V (n, 1)m1m2 V (n, 2)m2m3 V †(n − ~e1, 1)m3m4 V †(n − ~e2, 2)m4m1 ,

where

∑̃
n
≡

r∑
m1=−r

r∑
m2=−r

r∑
m3=−r

r∑
m4=−r

.

Therefore, Z̃ (β,R) can be rewritten as

Z̃ (β,R) =
∏

n

∑̃
n

∏
(n′,µ)

Qm1m2p1p2 (n
′, µ, β) ,

with

Qm1m2p1p2 (n
′, µ, β) =

∫
dV (n′, µ) eβTrV (n′,µ)V (n′, µ)m1m2 V †(n′, µ)p1p2 .
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Dropping the dependence on (n, µ), the latter quantity becomes

Qm1m2p1p2 (β) =
1

2r + 1

2r∑
J

J∑
k=−J

CJ(β)Crp2
rm1,Jk Crp1

rm2,Jk ,

where Crp2
rm1,Jk are Clebsch-Gordan coefficients and

CJ(β) =
2J + 1
β

I2J+1(2β) .

being I2J+1(2β) Bessel functions.

Since ∑
k

Crp2
rm1,Jk Crp1

rm2,Jk = Crp2
rm1,J(p2−m1)

Crp1
rm2,J(p1−m2)

δp2−m1,p1−m2 ,

just 2 of the 4 magnetic numbers associated to each link are eventually free and the
count of d.o.f. is restored.
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An example of allowed configuration with R = 5 (i.e., r = 2) with L = 3 is given by

−1 1
2 0

1 2
0 1

0 −1
−1 2

1 −1
−1 0

−2 −1
−1 0

−1 2
0 0

1 2
0 2

−2 −1
−2 −1

1 1
1 0
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A new configuration - to be submitted to a Metropolis test - is generated by introducing
a discontinuity and by propagating it randomly till it is reabsorbed. For example,
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Before computing quantities like correlators, let’s test whether the overall strategy
works by measuring less effort-demanding observables.

With respect to this, let’s consider the following relation

∂ln[ZO(3)(βO(3), θ)]

∂βO(3)

∣∣∣∣∣
βO(3)=β

∗

=
∂ln[Z (β,R)]

∂β

∂β

∂βO(3)

∣∣∣∣∣
βO(3)=β

∗

+

+
∂ln[Z (β,R)]

∂R
∂R

∂βO(3)

∣∣∣∣∣
βO(3)=β

∗

=

= 〈O1(β,R)〉
∂β

∂βO(3)

∣∣∣∣∣
βO(3)=β

∗

+ 〈O2〉(β,R)
∂R

∂βO(3)

∣∣∣∣∣
βO(3)=β

∗

.

A first check will be performed by comparing numerical estimates for 〈O1(β,R)〉 with
analytical results available in perturbation theory when expanding in β.

Note that 〈O1(β,R)〉 and 〈O2(β,R)〉 have to be periodic since the l.h.s. of the
previous equation is.
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Another observable - computed only within the second dual formulation - is given by

O3(β, J) = 〈
J∑

k=−J

Crp2
rm1,Jk Crp1

rm2,Jk 〉 ,

whose analytical perturbative value reads

O3(β, J) =
1

(2J + 1)

I2J+1(2β)

I1(2β)
+ O(β2J+2).

valid for J = 1, 2, 3.
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For both formulations, numerical estimates for O1(β, r) and O3(β, J) well agree with
the corresponding analytical perturbative computations.

Observable Analytical 1st form. 2nd form.
O1(0.1, 7.0) 0.09983 0.100(18) 0.0999(6)
O1(0.3, 11.0) 0.29560 0.296(17) 0.2956(17)
O1(0.5, 15.0) 0.48039 − 0.4804(26)
O1(0.7, 15.0) 0.64918 0.649(16) −
O3(0.3, 1.0) 0.00498 − 0.0049(61)
O3(0.5, 1.0) 0.01308 − 0.0131(60)

Table: Comparison between computer results and analytical perturbative values for
O1(β, r) and O3(β, J) with L = 40.
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Figure: O1(β,R) vs. R with β = 0.3 and R = 11.0 (L = 40). The red line
corresponds to the analytical result.
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In the large-β regime, O1(β,R) qualitatively behaves as expected.

0 2 4 6 8 10 12 14 16 18 20

1.6

1.62

1.64

1.66

1.68

1.7

1.72

R

O
1
(3
.6
,R
)

Figure: O1(β,R) vs. R at fixed β = 3.6 with L = 200.
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Figure: Blow-up of the previous figure in the large-R region.
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However, when parameteres are fine-tuned, the desired periodic behaviour for
O1(β,R) is not observed.
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Figure: O1(β,R) vs. θ: β ranges in [4.5; 5.1] while R in [6.56; 7.05] (L = 200).

Christian Torrero A new approach to the 2D σ model with a topological charge



Motivation
The SU(2) principal chiral model

Preliminary results
Conclusions

Open issues and prospects

Outline

1 Motivation
The model and the Haldane conjecture

2 The SU(2) principal chiral model
First dual formulation
Second dual formulation

3 Preliminary results
Checks
First computations

4 Conclusions
Open issues and prospects

Christian Torrero A new approach to the 2D σ model with a topological charge



Motivation
The SU(2) principal chiral model

Preliminary results
Conclusions

Open issues and prospects

To summarize:

Two dual formulations for the non-linear σ model with a topological term have
been introduced so to allow for numerical simulations with real θ

computer results in the perturbative regime well agree with analytical
computations

however, the behaviour of the model at large β has still to be fully understood

review of the theoretical aspects of the alternative formulations as well as of the
numerical code has been undertaken
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The complete expression for ZSU(2)(β) in the continuum becomes

ZSU(2)(β) =

∫ ∞
0

∏
x

R2(x)dR(x)

β
(
β2 + R2(x)

) ∫ ∏
x

[
δ

(
1−

3∑
k=1

σ2
k (x)

) 3∏
k=1

dσk (x)

]

× exp
[
−
∫

d2x L[R(x), σk (x)]

]
,

where

L[R(x), σk (x)] ≡
1
4
∂µ[R(x)σk (x)] Mkm

µν (x) ∂ν [R(x)σm(x)] ,

and

Mkm
µν (x) =

1
β2 + R2(x)

[
δµν

(
βδkm +

R2(x)

β
σk (x)σm(x)

)
+ i R(x)εµνεkmpσp(x)

]
.
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