COMPOSITE DARK MATTER EXCLUSIONS FROM THE LATTICE

Michael I. Buchoff Lawrence Livermore National Laboratory

Special Thanks: Graham Kribs Primary contributors: Sergey Syritsyn Ethan Neil

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

LLNL-PRES-595392

Lattice Strong Dynamics Collaboration

James Osborn Heechang Na

Mike Buchoff Chris Schroeder Pavlos Vranas Joe Wasem

Joe Kiskis

Rich Brower Michael Cheng Claudio Rebbi **Oliver Witzel**

David Schaich

Ethan Neil

Sergey Syritsyn

Tom Appelquist George Fleming Meifeng Lin **Gennady Voronov**

Saul Cohen

A SLICE OF THE UNIVERSE

How do we know DM is there?

Rotation Curves of Galaxies

Gravitational Lensing

Cosmological Backgrounds

THREE PRIMARY PROPERTIES OF DARK MATTER

1. Candidate should be Stable

- Explains why dark matter has survived to today

Implies a new symmetry and/or charge

2. Candidate should be EW Charge Neutral

- Explains why there is no visible evidence

Implies lightest stable particle is chargeless

3. Candidate should explain observed relic density

$$\rho_D \sim 0.2 \ \rho_c$$

How can this come about?

THERMAL RELIC

One approach to DM theories:

Choose DM Mass Choose DM Interactions

 $\rho_D \sim 0.2 \ \rho_c$

"WIMP Miracle"

Assume Interactions at/near EW Scale

AN ASYMMETRIC ALTERNATIVE?

S.Nussinov (1985)

R.S.Chivukula, T.P.Walker (1990)

D.B.Kaplan (1992)

Observe a different relation:

 $\rho_D \sim 5\rho_B$ $M_D n_D \sim 5M_B n_B$

AN ASYMMETRIC ALTERNATIVE?

S.Nussinov (1985)

R.S.Chivukula, T.P.Walker (1990)

D.B.Kaplan (1992)

Observe a different relation:

THERMAL VS. ASYMMETRIC

However:

Asymmetric relic density suggests negligible thermal abundance

Tricky to achieve for perturbative, elementary DM

Strongly-coupled composite theories most interesting... ...this is where the lattice can play significant role!

ASYMMETRIC MODELS

We Want:

★ Lightest stable composite chargeless (EM + weak) **★** Constituents that communicate with electroweak **Direct:** Subset of constituents that are non-singlet under $SU(2)_L$ Indirect: Bai, Neutral, but couples to heavy, Schwaller charged particles yet to be observed 2013

BARYON FLAVOR SYMMETRY Invariant under $SU(N_f)$ transformations

★ Flavor Non-symmetric Example: (3-color neutron ala QCD)

 $Q_u = Q_d$ or $Q_u \neq Q_d$

★ Flavor Symmetric Example: (4-color neutron)

 $Q_u = -Q_d$ only

HOW WE MIGHT SEE IT?

Dim-5 $\overline{\psi}\sigma^{\mu\nu}\psi F_{\mu\nu}$

 $(\overline{\psi}\psi)v_{\mu}\partial_{\nu}F^{\mu\nu}$

Dim-6

Magnetic Moment

Odd Nc No baryon flavor sym.

Odd Nc Baryon flavor sym.

Even Nc No Baryon flavor sym.

Even Nc Baryon flavor sym.

Charge Radius

V

 $(\overline{\psi}\psi)F_{\mu\nu}F^{\mu\nu}$

Polarizability

FOCUS OF CURRENT WORK

Direct detection exclusions for odd number of colors

Explore:

3-colors
Multiple degenerate masses
2 and 6 light flavors

Explores a range of confining theories for odd Nc theory

FOCUS OF CURRENT WORK

Direct detection exclusions for odd number of colors

Explores a range of confining theories for odd Nc theory

$$|\mathcal{M}|^2 = \frac{e^4}{Q^4} \mathcal{L}_A^{\mu\nu} \mathcal{L}_B^{\mu\nu} \qquad \qquad \mathcal{L}_X^{\mu\nu} = \frac{1}{N_X} \sum_{X X'} \langle X | J_{em}^{\mu} | X' \rangle \langle X' | J_{em}^{\nu} | X \rangle$$

$$|\mathcal{M}|^2 = \frac{e^4}{Q^4} \mathcal{L}_A^{\mu\nu} \mathcal{L}_B^{\mu\nu} \qquad \qquad \mathcal{L}_X^{\mu\nu} = \frac{1}{N_X} \sum_{X,X'} \langle X|J_{em}^{\mu}|X'\rangle \langle X'|J_{em}^{\nu}|X\rangle$$

Spin-0: $\mathcal{L}_X^{\mu\nu} = 4F^2(Q^2)\bar{p}^{\mu}\bar{p}^{\nu}$

 $\bar{p}^{\mu} = \frac{1}{2}(p'+p)^{\mu}$

$$|\mathcal{M}|^2 = \frac{e^4}{Q^4} \mathcal{L}_A^{\mu\nu} \mathcal{L}_B^{\mu\nu} \qquad \qquad \mathcal{L}_X^{\mu\nu} = \frac{1}{N_X} \sum_{X,X'} \langle X|J_{em}^{\mu}|X'\rangle \langle X'|J_{em}^{\nu}|X\rangle$$

Spin-0: $\mathcal{L}_X^{\mu\nu} = 4F^2(Q^2)\bar{p}^{\mu}\bar{p}^{\nu}$ $\bar{p}^{\mu} = \frac{1}{2}(p'+p)^{\mu}$

Spin-1/2: $\mathcal{L}_X^{\mu\nu} = 4\bar{p}^{\mu}\bar{p}^{\nu}(F_{1X}^2 + \frac{Q^2}{4M^2}F_{2X}^2) - (Q^2g^{\mu\nu} + q^{\mu}q^{\nu})(F_{1X} + F_{2X})^2$

$$|\mathcal{M}|^2 = \frac{e^4}{Q^4} \mathcal{L}_A^{\mu\nu} \mathcal{L}_B^{\mu\nu} \qquad \qquad \mathcal{L}_X^{\mu\nu} = \frac{1}{N_X} \sum_{X,X'} \langle X|J_{em}^{\mu}|X'\rangle \langle X'|J_{em}^{\nu}|X\rangle$$

Spin-0: $\mathcal{L}_X^{\mu\nu} = 4F^2(Q^2)\bar{p}^{\mu}\bar{p}^{\nu}$ $\bar{p}^{\mu} = \frac{1}{2}(p'+p)^{\mu}$

Spin-1/2: $\mathcal{L}_X^{\mu\nu} = 4\bar{p}^{\mu}\bar{p}^{\nu}(F_{1X}^2 + \frac{Q^2}{4M^2}F_{2X}^2) - (Q^2g^{\mu\nu} + q^{\mu}q^{\nu})(F_{1X} + F_{2X})^2$ Large nucleus: $\mathcal{L}_X^{\mu\nu} = 4W_{2X}(Q^2, q \cdot p)\bar{p}^{\mu}\bar{p}^{\nu} - W_{1X}(Q^2, q \cdot p)(Q^2g^{\mu\nu} + q^{\mu}q^{\nu})$

 $\frac{d\sigma}{dE_R} = \frac{\overline{|\mathcal{M}_{\rm SI}|^2} + \overline{|\mathcal{M}_{\rm SD}|^2}}{16\pi(M_{\chi} + M_T)^2 E_R^{\rm max}}$

 $\frac{d\sigma}{dE_R} = \frac{\overline{|\mathcal{M}_{\rm SI}|^2} + \overline{|\mathcal{M}_{\rm SD}|^2}}{16\pi(M_{\chi} + M_T)^2 E_R^{\rm max}}$

 $E_R^{\max} = \frac{2M_{\chi}^2 M_T v^2}{(M_{\chi} + M_T)^2}$

$$\frac{d\sigma}{dE_R} = \frac{\overline{|\mathcal{M}_{\rm SI}|^2} + \overline{|\mathcal{M}_{\rm SD}|^2}}{16\pi(M_{\chi} + M_T)^2 E_R^{\rm max}}$$

$$E_R^{\max} = \frac{2M_{\chi}^2 M_T v^2}{(M_{\chi} + M_T)^2}$$

$$\overline{|\mathcal{M}_{\rm SI}|^2} = e^4 \left[ZF_c(Q) \right]^2 \left(\frac{M_T}{M_{\chi}} \right)^2 \left[\frac{4}{9} M_{\chi}^4 \langle r_{E\chi}^2 \rangle^2 + \kappa_{\chi}^2 \left(1 + \frac{M_{\chi}}{M_T} \right)^2 \left(\frac{E_R^{\rm max}}{E_R} - 1 \right) \right]$$

$$\frac{d\sigma}{dE_R} = \frac{\overline{|\mathcal{M}_{\rm SI}|^2} + \overline{|\mathcal{M}_{\rm SD}|^2}}{16\pi(\underline{M_{\chi}} + M_T)^2 E_R^{\rm max}}$$

$$E_R^{\max} = \frac{2M_{\chi}^2 M_T v^2}{(M_{\chi} + M_T)^2}$$

$$\overline{|\mathcal{M}_{\rm SI}|^2} = e^4 \left[ZF_c(Q) \right]^2 \left(\frac{M_T}{M_{\chi}} \right)^2 \left[\frac{4}{9} M_{\chi}^4 \langle r_{E\chi}^2 \rangle^2 + \kappa_{\chi}^2 \left(1 + \frac{M_{\chi}}{M_T} \right)^2 \left(\frac{E_R^{\rm max}}{E_R} - 1 \right) \right]$$
$$\overline{|\mathcal{M}_{\rm SD}|^2} = e^4 \frac{2}{3} \left(\frac{J+1}{J} \right) \left[\left(A \frac{\mu_T}{\mu_n} \right) F_s(Q) \right]^2 \kappa_{\chi}^2$$

$$\frac{d\sigma}{dE_R} = \frac{\overline{|\mathcal{M}_{\rm SI}|^2} + \overline{|\mathcal{M}_{\rm SD}|^2}}{16\pi(\underline{M_{\chi}} + M_T)^2 E_R^{\rm max}}$$

$$E_R^{\max} = \frac{2M_\chi^2 M_T v^2}{(M_\chi + M_T)^2}$$

$$\overline{|\mathcal{M}_{\rm SI}|^2} = e^4 \left[ZF_c(Q) \right]^2 \left(\frac{M_T}{M_{\chi}} \right)^2 \left[\frac{4}{9} M_{\chi}^4 \langle r_{E\chi}^2 \rangle^2 + \kappa_{\chi}^2 \left(1 + \frac{M_{\chi}}{M_T} \right)^2 \left(\frac{E_R^{\rm max}}{E_R} - 1 \right) \right]$$
$$\overline{|\mathcal{M}_{\rm SD}|^2} = e^4 \frac{2}{3} \left(\frac{J+1}{J} \right) \left[\left(A \frac{\mu_T}{\mu_n} \right) F_s(Q) \right]^2 \kappa_{\chi}^2$$

$$R = \frac{M_{\text{detector}}}{M_T} \frac{\rho_{\text{DM}}}{M_{\chi}} \int_{E_{\text{min}}}^{E_{\text{max}}} dE_R \,\mathcal{A}cc(E_R) \left\langle v' \,\frac{d\sigma}{dE_R} \right\rangle_f$$

*Non-perturbative lattice input

 $E_{max}^{Xe} = 30.5 \text{ keV}$

Xenon100:

$$E_{min}^{Xe} = 6.6 \text{ keV}$$

THREE-POINT OPERATORS

$$\langle N(p')|\overline{\psi}\gamma^{\mu}\psi|N(p)\rangle = \overline{U}(p')\left[F_1^{\psi}(Q^2)\gamma^{\mu} + F_2^{\psi}(Q^2)\frac{i\sigma^{\mu\nu}q_{\nu}}{2M_B}\right]U(p)$$

Isovector: $F_{1,2}^{v}(Q^2) = F_{1,2}^{d}(Q^2) - F_{1,2}^{u}(Q^2)$

Isoscalar: $F_{1,2}^s(Q^2) = F_{1,2}^d(Q^2) + F_{1,2}^u(Q^2)$

Neutral FF: $Q_u = 2/3$ $Q_d = -1/3$

$$F_{1,2;\text{neut}}(Q^2) = \frac{1}{6}F_{1,2}^s(Q^2) - \frac{1}{2}F_{1,2}^v(Q^2)$$

 $\kappa_{\text{neut}} = F_{2;\text{neut}}(0) \qquad \langle r_{1;\text{neut}}^2 \rangle = -6 \frac{dF_{1;\text{neut}}(Q^2)}{dQ^2} \Big|_{Q^2=0}$

$$\langle r_{E;\text{neut}}^2 \rangle = \langle r_{1;\text{neut}}^2 \rangle + \frac{3\kappa_{\text{neut}}}{2M_B^2}$$

THREE-POINT CALCULATION

 $t = 0 \qquad t = \tau \qquad t = \tau_0$

Disconected diagrams omitted in current calculation

2 Propagators

One measurements One time insertion

Transverse charge density:

(courtesy of J. Wasem)

SCALE SETTING

How do we define lattice spacing in physical units?

Lattice QCD: Hadron Masses, HQ potentials, etc. (Example) $aM_{\Omega} = \#$ \longrightarrow $a \approx \frac{\#}{1670 \text{ MeV}}$ Technicolor: "Higgs" vev $af_{\pi} \xrightarrow{m_f \to 0} \# \qquad \Longrightarrow \qquad a \approx \frac{\#}{246 \text{ GeV}}$ Dark Matter: Dark Matter Mass $aM_B = \#$ \longrightarrow $a \approx \frac{\#}{M_B}$

SCALE SETTING

How do we define lattice spacing in physical units?

Lattice QCD: Hadron Masses, HQ potentials, etc. (Example) $aM_{\Omega} = \#$ \longrightarrow $a \approx \frac{\#}{1670 \text{ MeV}}$ Technicolor: "Higgs" vev $af_{\pi} \xrightarrow{m_f \to 0} \# \qquad \Longrightarrow \qquad a \approx \frac{\#}{246 \text{ GeV}}$ Dark Matter: Dark Matter Mass $aM_B = \#$ \longrightarrow $a \approx \frac{\#}{M_B}$ Vary this value 0 40 50 100 WIMP Mass [GeV/c²]

300 400

CALCULATION DETAILS

10 DWF Ensembles:

- $32^3 \times 64 \times 16$ lattices

 $am_{\rho} \sim \frac{1}{5}$

- 2 flavor: $m_f = 0.010 0.030$
- 6 flavor: $m_f = 0.010 0.030$

Table 1: 2 Flavor			Table 1: 6 Flavor			
m_q	# Configs	# Meas		m_q	# Configs	# Meas
0.010	564	1128	().010	221	442
0.015	148	296	().015	112	224
0.020	131	262	().020	81	162
0.025	67	268	().025	89	267
0.030	39	154	().030	72	259

BARYON MASS

Red - 2 Flavor Blue - 6 Flavor

MAGNETIC MOMENT

0.0 -0.5 -1.0 Red - 2 Flavor ^xuent – 1.5 Blue - 6 Flavor -2.0 -2.5 -3.0 1.2 2.0 2.2 1.0 1.6 1.8 1.4 M_B/M_{B_0}

 $u = \frac{\kappa}{2M_B}$

 $\kappa_{\rm neut} = \frac{1}{6}\kappa_s - \frac{1}{2}\kappa_v$

CHARGE RADIUS

EXCLUSION PLOTS

Dashed - Xenon100 PRD 88 014502 (2013)

FINAL WORD

Based purely on observational DM data:

Composite dark matter is the most "natural"

Lattice can address place initial bounds on models - Tight constraints on odd Nc theories *Models with QCD charges excluded below 10 TeV - Currently exploring polarizabilities of even Nc theories *4-color model building underway (Kribs, Neil, MIB) *4-color baryon simulations in production (LSD)

This research was supported by the LLNL LDRD "Illuminating the Dark Universe with PetaFlops Supercomputing" 13-ERD-023 and by the LLNL Multiprogrammatic and Institutional Computing program through the Tier 1 Grand Challenge award that has provided us with the large amounts of necessary computing power.