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Introduction

Problems in particle physics solved by extra dimensions:

Hierarchy problem

Cosmological constant problem

Mechanisms for dimensional reduction to the usual 4D spacetime:

Compactificaion

Based on Kaluza-Klein theory with a mass scale MKK ∼ 1
R

Localization

So called: Brane world scenario
All particles are localised on 4D hyperplanes (3-brane),
embedded in the bulk
Notable examples of models that use localization:
Randall-Sundrum(RS), Dvali-Shifman(DS), Fu-Nielsen
In most of them, all particles are free to propagate on the
branes but are confined in the bulk
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Layer phase idea

Fu-Nielsen idea (1984)

If one imposes an anisotropy between the interactions in the usual
4D space and the extra dimension, a new phase arises in the phase
diagram which is called Layer phase. In this phase, the particles
can travel freely (exhibit Coulombic behaviour) in the four
dimensions, but they are confined along the extra dimension.

So, our observed 4D world can be visualised as a hyperplane
embedded in the extra dimension, since neighbouring 4D layers do

not interact.
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Recipe to look for the existence of a Layer phase

Write down the action for a 5D model in the continuum

Discretize it - Define the Wilson Action with an anisotropy

Investigate the Phase Diagram

Find the order of the phase transitions

Second order transition:

Can take the continuum limit
Layer phase has a physical interpretation

First order phases transition: lattice artefact.
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Literature

What has already been investigated in pure gauge groups?

Layer phase exists in U(1) [Dimopoulos et al. (2006), Farakos and Vrentzos (2008)]

Most difficult to show its existence in the Non-Abelian case

Non-abelian gauge group: SU(2)

Interesting groups for the Electroweak Sector of SM:
U(1) and SU(2)

In the Mean Field Approximation the existence of the Layer
phase was shown [Irges and Knechtli, arXiv:0905.2757]

Investigation of SU(2) using Monte Carlo numerical
simulations [Farakos and Vrentzos, arXiv:1007.4442]

What are we exploring?
SU(2) model using Monte Carlo simulations, extending the work of
Farakos and Vretzos [L.Del Debbio, R.D.Kenway, EL, E.Rinladi, arXiv:1305.0752]
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The model

Continuum 5D SU(2) Yang-Mills Euclidean Action:

SE =

∫
d4x

∫
dx5

1

2g2
5

TrF 2
MN M,N=1...5

Discretized anisotropic Wilson Action:

S = β4
∑

x

∑
1≤µ<ν≤4

(
1− 1

2
Tr Uµν(x)

)
+ β5

∑
x

∑
1≤µ≤4

(
1− 1

2
Tr Uµ5(x)

)
µ,ν=1...4

where:
Uµν(x) = Uµ(x)Uν(x + µ̂a4)U

†
µ(x + ν̂a4)U

†
ν(x)

Uµ5(x) = Uµ(x)U5(x + µ̂a4)U
†
µ(x + 5̂a5)U

†
5 (x)

with Uµ = exp(ig5a4Aµ) and U5 = exp(ig5a5A5).
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The model

Discretized anisotropic Wilson Action:

S = β4
∑

x

∑
1≤µ<ν≤4

(
1− 1

2
Tr Uµν(x)

)
+ β5

∑
x

∑
1≤µ≤4

(
1− 1

2
Tr Uµ5(x)

)
µ,ν=1...4

β4 and β5 set the lattice spacings a4 and a5 (in the usual four
directions and in the extra one, respectively)

β4 = 2Nc a5
g52

β5 =
2Nc a24
a5g52

Useful to define anisotropy parameter:

γ =
√

β5
β4

⇒ At tree level: γ = a4
a5
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Observables

Average Plaquette in the extra dimension

〈P̂5〉 =
〈 1

4VNc

∑
x

∑
µ

Tr(Uµ5(x))
〉

Susceptibility of Extra-dimensional Plaquette

χP̂5
= V

(
〈P̂2

5 〉 − 〈P̂5〉2
)

(1)

Polyakov Loop in temporal direction

Poly0 =
LT

NcV

∣∣∣∣∑
~x,x5

Tr

(LT−1)a4∏
x1=0

U1(x)

∣∣∣∣
Susceptibility of Polyakov Loop in temporal direction

χPolyT
=

V

LT

〈(
Poly2T − 〈PolyT 〉

2)〉 (2)
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Regimes of anisotropy parameter and dimensional reduction

γ > 1 (a4 > a5)
Dimensional reduction achieved by compactification
[Ejiri et al., arXiv:0006.217, P. deForcrand et al. arXiv:1003.4643, L. Del Debbio et al., arXiv: 1203.2116]

γ < 1 (a4 < a5)

Impose one small direction
⇒ Dimensional reduction via compactification
[Knechtli et al., arXiv:1110.4210]

Keep all directions large enough in size
⇒ Dimensional reduction via localization
[Farakos and Vrentzos, arXiv:1007.4442]



Introduction/Motivation
The model

Dimensional Reduction
Conclusions

Phase Diagram
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Localization

Choice of points in the parameter space based on previous
works:

Bulk phase transition exists up to β4=2.50 [Knechtli et al., 2011]

For every β4, there is a minimum lattice size required to see
the bulk phase transition

As β4 increases, transition gets weaker



Introduction/Motivation
The model

Dimensional Reduction
Conclusions

Localization

[Knechtli et al., arXiv: 1110.4210]
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Localization

In the previous Monte Carlo investigation of SU(2) YM model:
[Farakos, Vrentzos, arXiv:1007.4442]

Points: β4 = 2.60 and β4 = 3.00

Reasons for choosing these points:

Measurement of the gap of the plaquette

β4 = 2.60: the critical point at which the order of the
transition changes from first to second

β4=3.00: deep in “Layer” phase

Main problems:

Lattice Volumes: up to 165 - below the critical size

Extrapolation of thermodynamic limit is important!

Critical exponents not in a good agreement with the matched
4D Ising Model
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Results

Our choice: β4 = 2.60

Reproduced results for average plaquette in extra dimension
for 165
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Results

Critical point found to be at β5c = 0.8437(5)
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Results

Bigger Lattice Volumes: V = 204 × 8, 244 × 8 and 324 × 8

Measurements of observables taken close to the critical point,
starting both from Cold and Hot configurations

Kennedy-Pendleton Heat Bath Algorithm applied

100 000 - 200 000 measurements for each point
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Results

V = 204 × 8, β4 = 2.60, β5 = 0.8435
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Fluctuation between two vacua, however there is not a clear gap.
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Results

V = 244 × 8, β4 = 2.60, β5 = 0.8435
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Clear two-state signal with a bit of overlap
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Results

V = 324 × 8, β4 = 2.60, β5 = 0.844
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Two-state signal readily apparent ⇒ First Order phase transition
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What about larger β4?

A change in the order of the phase transition for larger values
of β4 cannot be excluded

However, there is no indication that it will change from first
to second

Further investigation decided not to be done since very big
lattice volumes are needed and it does not seem worthwhile

Lattice Volume Compute time (hours)

16× 16× 16× 16× 16 190
20× 20× 20× 20× 8 250
24× 24× 24× 24× 8 620

Compute time on an NVIDIA Tesla C2070 Computing Processor for 100 000 measurements for a single point
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Summary

The bulk phase transition between confined/deconfined
phases continues up to β4 = 2.60

No evidence for a second order transition up to β4 = 2.60

Large volumes are needed to investigate the region where the
Layer phase is believed to exist

The scenario of dimensional reduction of the 5D theory to a
continuum 4D theory via the existence of the so-called layer
phase seems unpromising.
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Thank you!
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Why implement it on the lattice?

SU(2) model in extra dimensions is non-renormalizable

It has a trivial fixed point

In analytic approaches:
1 approach fixed point ⇒ triviality
2 go away from fixed point ⇒ confinement that has strong

dynamics that are hidden in perturbative analysis

Lattice provides a regulator that preserves gauge invariance
and maintains the cutoff (Λ = 1/a)



Behaviour of Potential (V (R)) in different phases

−lnWc [U] = V (R)T

Strong ∼ R

5D Coulombic ∼ 1/R2

Layer ∼ 1/R



V = 204 × 8, β4 = 2.60, β5 = 0.8435
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Notable examples of models that use localization

DS Mechanism
Based on the idea that a confining theory of a group G can be
localized on a topological defect with a symmetry of G’, that
is: “A topological defect ”eats up” the necessary number of
dimensions and breaks the symmetry to a group G’ inside the
defect”.
G.R. Dvali and M.A. Shifman, Phys. Lett. B 396 (1997) 64 and B 407 (1997) 452 (E) [arXiv: 9612.128]

RS model
All models with non-compact internal spaces suffer from
naked singularities. In RS model, we deal with delta-function
singularities that are interpreted physically as a 4D domain
wall, embedded in the 5D bulk. Even if a 4D graviton is
localised on the domain wall, the mechanism of localization of
gauge fields is still unknown. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690

(1999) [arXiv: 9906.064] and Phys. Rev. Lett. 83, 3370 (1999) [arXiv: 9905.221]
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