O(a²)-IMPROVED ACTIONS FOR HEAVY QUARKS ~SCALING STUDIES ON QUENCHED LATTICES~

<u>Yong-Gwi Cho (University of Tsukuba)</u> Shoji Hashimoto, Jun-Ichi Noaki (KEK) Andreas Jüttner, Marina Marinkovic (Southampton)

Lattice2013@Mainz

MOTIVATION

- Precise calculation of heavy-light (D and B) and heavyheavy (Ψ and Υ) systems. It needs good control of discretization effects of (am_Q)ⁿ.
- Assume that fine-lattice simulations (a⁻¹=2.4-4.8GeV, JLQCD collaboration) are available. Still, am_Q is not very small (am_Q~0.54-0.27 for charm). Improved fermion formulations are crucial.
- We test existing and newly developed formulations
 as a joint effort of JLQCD and UKQCD (Edinburgh-Southampton)

STRATEGY

Test for

- scaling of spectrum, decay constant
- dispersion relation

on quenched configurations of a⁻¹=2.0, 2.8. 3.4, 6.0 GeV

With

- O(a²)-improved Brillouin fermion
- Domain-wall (or Möbius) fermion

against the standard Wilson (or clover) fermion.

PLAN OFTHISTALK

- I. Lattice fermion formulation for heavy quarks
- O(a²)-improved Brillouin fermion: formulation, tree-level dispersion relation, eigenvalue spectra
- 2. Scaling studies
- Quenched lattices
- Dispersion relation, hyperfine splitting of charmonium
- Decay constant for heavy-heavy systems
- 3. Outlook

I. FERMION FORMULATION FOR HEAVY QUARKS

 O(a²)-improved Brillouin fermion: formulation, tree-level dispersion relation, eigenvalue spectra

LATTICE FERMIONS

- Wilson fermions
 - Discretization error is O(am). O(a)-improvement is often considered, then O(am)²
- Domain-wall fermions
 - preserve chiral symmetry. Discretization error is O(am)². Limitation on the value of am.
- Improved fermions
 - We develop an O(a²)-improved fermion formulation based on the Brillouin fermion. It has good properties (dispersion relation, ...) for heavy quarks.

BRILLOUIN FERMIONS

[S.Durr,G.Koutsou Phys.RevD83(2011)114512] [M.Creutz,T.Kimura,T.Misumi JHEP 1012:041,2010]

- Brillouin operator(free)
 - ~ improvement of Wilson fermions

-> continuum like, Ginsparg-Wilson like

$$D^{Wil}(n,m) = \sum_{\mu} \gamma_{\mu} \nabla^{std}_{\mu}(n,m) - \frac{a}{2} \Delta^{std}(n,m) + m_0 \delta_{n,m}$$

Derivative term
$$D^{Bri}(n,m) = \sum_{\mu} \gamma_{\mu} \nabla^{iso}_{\mu}(n,m) - \frac{a}{2} \Delta^{bri}(n,m) + m_0 \delta_{n,m}$$

DERIVATIVE TERM : ISOTROPIC DERIVATIVE <u>2 dimension</u>

standard x-derivative

$$\nabla_x^{std} \psi_n = \frac{1}{2a} \left(\psi_{n+\hat{x}} - \psi_{n-\hat{x}} \right)$$

$$\simeq \partial_x \psi_n + \frac{a^2}{6} \partial_x^3 \psi_n$$

$$= \left(1 + \frac{a^2}{6} \partial_x^2 \right) \partial_x \psi_n$$

unisotropic error

$$\left(1 + \frac{a^2}{6}\Delta\right)\partial_x\psi_n$$

isotropic error

isotropic x-derivative (restore the rotational symmetry)

$$\nabla_x^{iso}\psi_n = \left(1 + \frac{a^2}{6}\partial_y^2\right)\left(1 + \frac{a^2}{6}\partial_x^2\right)\partial_x\psi_n$$

= $\left(1 + \frac{a^2}{6}\partial_y^2\right)\nabla_x^{std}\psi_n$ =>add a 2-hop term (in 2D)
=>add 2,3,4-hop terms (in 4D)

2 LAPLACIAN TERM: (BRILLOUIN LAPLACIAN)

 $\Delta^{std}(p) = 2(\cos(p_x) + \cos(p_y) + \cos(p_z) + \cos(p_t) - 4)$ $\Delta^{bri}(p) = 4\cos^2(p_x/2)\cos^2(p_y/2)\cos^2(p_z/2)\cos^2(p_t/2) - 4$

$$M(p) = M - \frac{r}{2} \Delta^{std}(p)$$

= $M - r(\cos(px) + \cos(py) + \cos(pz) + \cos(pt) - 4)$

$$p_{\mu} = (0, 0, 0, 0) \rightarrow M(p) = M \quad (\times 1)$$

$$p_{\mu} = (\pi, 0, 0, 0), \dots \rightarrow M(p) = M + 2r \quad (\times 4)$$

$$p_{\mu} = (\pi, \pi, 0, 0), \dots \rightarrow M(p) = M + 4r \quad (\times 6)$$

$$p_{\mu} = (\pi, \pi, \pi, 0), \dots \rightarrow M(p) = M + 6r \quad (\times 4)$$

$$p_{\mu} = (\pi, \pi, \pi, \pi), \dots \rightarrow M(p) = M + 8r \quad (\times 1)$$

$$M(p) = M - \frac{r}{2} \Delta^{bri}(p)$$

= $M - 2r \left(\cos^2 \left(px/2 \right) \cos^2 \left(py/2 \right) \cos^2 \left(pz/2 \right) \cos^2 \left(pt/2 \right) - 1 \right).$
 $p_{\mu} = (0, 0, 0, 0) \rightarrow M(p) = M \quad (\times 1)$
 $p_{\mu} = (\pi, 0, 0, 0), \dots \rightarrow M(p) = M + 2r \quad (\times 4)$
 $p_{\mu} = (\pi, \pi, 0, 0), \dots \rightarrow M(p) = M + 2r \quad (\times 6)$
 $p_{\mu} = (\pi, \pi, \pi, 0), \dots \rightarrow M(p) = M + 2r \quad (\times 4)$
 $p_{\mu} = (\pi, \pi, \pi, \pi), \dots \rightarrow M(p) = M + 2r \quad (\times 1)$

 \Rightarrow all doublers have a same mass.

EIGENVALUE SPECTRA (FREE)

Ginsparg-Wilson like<=

DISPERSION RELATION (FREE)

estimate the energy E(p) from the pole of $D^{-1}(p)$ in the momentum space.

Dispersion relation of meson, baryon is good too. Difference of Wilson and Brillouin becomes more significant at heavy quarks regions. [S.Durr, G.Koutsou, T.Lippert Phys.Rev.D86(2012) 114514]

DISCRETIZATION ERRORS FOR BRILLOUIN FERMIONS

• expand the energy up to $O(a^5)$

$$E\left(\overrightarrow{0}, ma\right)^{2} = (ma)^{2} - (ma)^{3} + \frac{11}{12}(ma)^{4} - \frac{5}{6}(ma)^{5}$$
$$=> O(a) \cdot O(a^{2}) \cdot O(a^{3}) \text{ error}$$

dispersion relation for massive quarks

O(a²)-IMPROVED BRILLOUIN FERMIONS

- eliminate $O(a^2)$ -errors at tree-level
- Improved Brillouin Dirac operator

е

$$D^{IB} = \sum_{\mu} \gamma_{\mu} (1 - \frac{a^2}{12} \Delta^{bri}) \nabla^{iso}_{\mu} (1 - \frac{a^2}{12} \Delta^{bri}) + c_{IB} a^3 \left(\Delta^{bri}\right)^2 + ma$$

$$c_{IB} = 1/8$$

$$(a) O(a^2) \text{ or rors}$$
expansion of energy up to $O(a^5) \quad E^2 \left(\overrightarrow{0}, ma\right) = (ma)^2 + \frac{(ma)^5}{4}$

$$=>$$
 start from O(a³)

EIGENVALUE SPECTRA(FREE)

Eigenvalue spectra of Improved Brillouin operator get close to the imaginary axis. (more continuum like)

3. SCALING STUDIES

Dispersion relation, hyperfine splitting of charmonium (O(a²)-improved Brillouin fermions vs Wilson)
Decay constant for heavy-heavy systems

(Domain-wall fermions (Shamir kernel))

QUENCHED CONFIGURATIONS

- Tree-level Symanzik gauge action
- Generated with CHROMA using Heat bath algorithm (IRIDIS HPC Facility, University of Southampton)

L/a	β	Nconf	WO	a ⁻¹ [GeV]
16	4.41	100	1.7668(26)	1.97
24	4.66	100	2.5023(52)	2.81
32	4.80	-	-	3.39
48	4.94	_	-	5.92

- L kept fixed to ~ I.6fm through the Wilson flow -measuring obs. w₀ introduced in [BMW-c, arXiv:1203.4469]
 -JGF code of J. Hudspith
- a⁻¹ is a rough estimate, not taking into account the systematic error of quenching.

3. SCALING STUDIES

Dispersion relation, hyperfine splitting of charmonium (O(a²)-improved Brillouin fermions vs Wilson)
Decay constant for heavy-heavy systems (Domain-wall fermions (Shamir kernel))

DISPERSION RELATION, HYPERFINE SPLITTING OF CHARMONIUM

mass tuning (set to charmonium)

IS-state spin-averaged mass

$$m_{1S} = (m_{ps} + 3m_{vec})/4 = 3.0[GeV]$$

Dirac operator - Wilson(c_{sw}=0.0), Improved Brillouin

• effective speed of light for the pseudo scalar meson

$$c_{eff}^{2}\left(p^{2}\right) = \frac{E^{2}(\overrightarrow{p}) - E^{2}(\overrightarrow{0})}{\overrightarrow{p}^{2}}$$

• Hyperfine splitting

$$m_{vec} - m_{ps}$$

EFFECTIVE SPEED OF LIGHT FOR PSEUDO-SCALAR MESON

calculate the two point correlator with momentum
extract the energy and estimate effective speed of light

SCALING FOR SPEED OF LIGHT

scaling violation is small for the improved Brillouin.

SCALING FOR HYPERFINE SPLITTING OF IS STATE

hyperfine splitting = $m_{vec} - m_{ps}$

scaling violation is small for the improved Brillouin.

3. SCALING STUDIES

- Dispersion relation, hyperfine splitting of charmonium (O(a²)-improved Brillouin fermions vs Wilson)
- Decay constant for heavy-heavy systems (Domain-wall fermions (Shamir kernel))

heavy-heavy Decay constant

- Domain-wall fermions
- Heavy quark mass varied: $am_q \in [0.1, 0.5]$
- I/m dependence is shown with a reference point m_{ref} = 1.5 GeV.
- Data at a⁻¹= 1.97 and 2.81 GeV lattices are overlaid.

$$\frac{\sqrt{m_{PS}}f_{PS}}{\sqrt{m_{ref}}f_{ref}}$$

- Good behaviour when going towards the heavy regime, in the region $m_{PS} \in [1.5, 3]$ GeV
- I.99 and 2.81 GeV⁻¹ lattice on top of each other indication of good scaling
- Third (finer) lattice spacing in progress

3.OUTLOOK

- scaling study for heavy quarks
 - various quantities (spectrum, decay constant, ...)
 - various formulation (O(a²)-improved Brillouin fermion, domain-wall,...)
- Good scaling has so far been observed for
 - speed of light, hyperfine splitting with the $O(a^2)$ -improved Brillouin fermion.
 - heavy-heavy decay constant, varying m_q, with domain-wall fermion.

Furthermore we plan to extend the studies for more (quantity x formulation) choices.

Back Up

ISOTROPIC DERIVATIVE

$$\begin{aligned} \text{position space} \\ a\nabla_{\mu=\hat{x}}^{iso}\left(n,m\right) &= \frac{1}{432} \Big[-\delta_{n-\hat{x}-\hat{y}-\hat{z}-\hat{t},m} + \delta_{n+\hat{x}-\hat{y}-\hat{z}-\hat{t},m} - 4\delta_{n-\hat{x}-\hat{z}-\hat{t},m} + 4\delta_{n+\hat{x}-\hat{z}-\hat{t},m} \\ &\quad -\delta_{n-\hat{x}+\hat{y}-\hat{z}-\hat{t},m} + \delta_{n+\hat{x}+\hat{y}-\hat{z}-\hat{t},m} - 4\delta_{n-\hat{x}-\hat{y}-\hat{t},m} + 4\delta_{n+\hat{x}-\hat{y}-\hat{t},m} \\ &\quad -16\delta_{n-\hat{x}-\hat{t},m} + 16\delta_{n+\hat{x}-\hat{t},m} - 4\delta_{n-\hat{x}+\hat{y}-\hat{t},m} + 4\delta_{n+\hat{x}+\hat{y}-\hat{t},m} \\ &\quad -\delta_{n-\hat{x}-\hat{y}+\hat{z}-\hat{t},m} + \delta_{n+\hat{x}-\hat{y}+\hat{z}-\hat{t},m} - 4\delta_{n-\hat{x}+\hat{z}-\hat{t},m} + 4\delta_{n+\hat{x}+\hat{y}-\hat{z},m} \\ &\quad -\delta_{n-\hat{x}+\hat{y}+\hat{z}-\hat{t},m} + \delta_{n+\hat{x}-\hat{y}+\hat{z}-\hat{t},m} - 4\delta_{n-\hat{x}-\hat{y}-\hat{z},m} + 4\delta_{n+\hat{x}-\hat{y}-\hat{z},m} \\ &\quad -16\delta_{n-\hat{x}-\hat{y},m} + 16\delta_{n+\hat{x}-\hat{y},m} - 4\delta_{n-\hat{x}-\hat{y}-\hat{z},m} + 4\delta_{n+\hat{x}-\hat{y}-\hat{z},m} \\ &\quad -16\delta_{n-\hat{x}-\hat{y},m} + 16\delta_{n+\hat{x}-\hat{y},m} - 64\delta_{n-\hat{x},m} + 64\delta_{n+\hat{x},m} \\ &\quad -16\delta_{n-\hat{x}+\hat{y},m} + 16\delta_{n+\hat{x}+\hat{y},m} - 4\delta_{n-\hat{x}-\hat{y}+\hat{z},m} + 4\delta_{n+\hat{x}-\hat{y}+\hat{z},m} \\ &\quad -\delta_{n-\hat{x}-\hat{y}-\hat{z}+\hat{t},m} + \delta_{n+\hat{x}-\hat{y}-\hat{z}+\hat{t},m} - 4\delta_{n-\hat{x}-\hat{y}+\hat{z},m} + 4\delta_{n+\hat{x}-\hat{y}+\hat{z},m} \\ &\quad -\delta_{n-\hat{x}+\hat{y}-\hat{z}+\hat{t},m} + \delta_{n+\hat{x}-\hat{y}-\hat{z}+\hat{t},m} - 4\delta_{n-\hat{x}-\hat{y}+\hat{z},m} + 4\delta_{n+\hat{x}-\hat{y}+\hat{z},m} \\ &\quad -\delta_{n-\hat{x}+\hat{y}-\hat{z}+\hat{t},m} + \delta_{n+\hat{x}-\hat{y}-\hat{z}+\hat{t},m} - 4\delta_{n-\hat{x}-\hat{y}+\hat{t},m} + 4\delta_{n+\hat{x}-\hat{y}+\hat{t},m} \\ \\ &\quad -\delta_{n-\hat{x}+\hat{y}-\hat{z}+\hat{t},m} + \delta_{n+\hat{x}-\hat{y}-\hat{z}+\hat{t},m} - 4\delta_{n-\hat{x}-\hat{y}+\hat{t},m} + 4\delta_{n+\hat{x}-\hat{y}+\hat{t},m} \\ \\ &\quad -\delta_{n-\hat{x}+\hat{y}-\hat{z}+\hat{t},m} + \delta_{n+\hat{x}-\hat{y}+\hat{z}+\hat{t},m} - 4\delta_{n-\hat{x}+\hat{y}+\hat{t},m} + 4\delta_{n+\hat{x}+\hat{y}+\hat{t},m} \\ \\ &\quad -\delta_{n-\hat{x}+\hat{y}+\hat{z}+\hat{t},m} + \delta_{n+\hat{x}+\hat{y}-\hat{z}+\hat{t},m} - 4\delta_{n-\hat{x}+\hat{y}+\hat{t},m} + 4\delta_{n+\hat{x}+\hat{y}+\hat{t},m} \\ \\ &\quad -\delta_{n-\hat{x}+\hat{y}+\hat{z}+\hat{t},m} + \delta_{n+\hat{x}+\hat{y}+\hat{z}+\hat{t},m} - 4\delta_{n-\hat{x}+\hat{z}+\hat{t},m} + 4\delta_{n+\hat{x}+\hat{z}+\hat{t},m} \\ \\ &\quad -\delta_{n-\hat{x}+\hat{y}+\hat{z}+\hat{t},m} + \delta_{n+\hat{x}+\hat{y}+\hat{z}+\hat{t},m} - 4\delta_{n-\hat{x}+\hat{z}+\hat{t},m} + 4\delta_{n+\hat{x}+\hat{z}+\hat{t},m} \\ \\ &\quad -\delta_{n-\hat{x}+\hat{y}+\hat{z}+\hat{t},m} + \delta_{n+\hat{x}+\hat{y}+\hat{z}+\hat{t},m} - 4\delta_{n-\hat{x}+\hat{z}+\hat{t},m} + 4\delta_{n+\hat{x}+\hat{z}+\hat{t},m} \\ \\ &\quad -\delta_{n-\hat{x}+\hat{y}+\hat{z}+\hat{t},m} + \delta_{n+\hat{x}+\hat{y}+\hat{z}+\hat{t},m} - 4\delta_{n-\hat{x}+\hat{z}+$$

momentum space

$$\nabla_{\mu=\hat{x}}^{iso}(p) = isinp_x(cosp_y+2)(cosp_z+2)(cosp_t+2)/27$$

BRILLOUIN LAPLACIAN

position space

a

$${}^{2} \Delta^{bri} (n,m) = \frac{1}{64} \left[\begin{array}{c} \delta_{n-\hat{x}-\hat{y}-\hat{z}-\hat{t},m} + 2\delta_{n-\hat{y}-\hat{z}-\hat{t},m} + \delta_{n+\hat{x}-\hat{y}-\hat{z}-\hat{t},m} + 2\delta_{n-\hat{x}-\hat{z}-\hat{t},m} + 4\delta_{n-\hat{z}-\hat{t},m} + 2\delta_{n+\hat{x}-\hat{z}-\hat{t},n} \\ + \delta_{n-\hat{x}+\hat{y}-\hat{z}-\hat{t},m} + 2\delta_{n+\hat{y}-\hat{z}-\hat{t},m} + \delta_{n+\hat{x}+\hat{y}-\hat{z}-\hat{t},m} + 2\delta_{n-\hat{x}-\hat{y}-\hat{t},m} + 4\delta_{n-\hat{y}-\hat{t},m} + 2\delta_{n+\hat{x}-\hat{y}-\hat{t},m} \\ + 4\delta_{n-\hat{x}-\hat{t},m} + 8\delta_{n-\hat{t},m} + 4\delta_{n+\hat{x}-\hat{t},m} + 2\delta_{n-\hat{x}+\hat{y}-\hat{t},m} + 4\delta_{n+\hat{x}-\hat{t},m} + 2\delta_{n-\hat{x}+\hat{y}-\hat{t},m} \\ + \delta_{n-\hat{x}-\hat{y}+\hat{z}-\hat{t},m} + 2\delta_{n-\hat{y}+\hat{z}-\hat{t},m} + \delta_{n+\hat{x}-\hat{y}+\hat{z}-\hat{t},m} + 2\delta_{n-\hat{x}+\hat{x}-\hat{x},m} + 4\delta_{n+\hat{x}-\hat{y},m} \\ + \delta_{n-\hat{x}-\hat{y}+\hat{z}-\hat{t},m} + 2\delta_{n-\hat{y}+\hat{z}-\hat{t},m} + \delta_{n+\hat{x}+\hat{y}+\hat{z}-\hat{t},m} + 2\delta_{n-\hat{x}+\hat{y}-\hat{z},m} + 4\delta_{n-\hat{y}-\hat{z},m} + 2\delta_{n+\hat{x}+\hat{y}-\hat{z},m} \\ + \delta_{n-\hat{x}+\hat{y}+\hat{z}-\hat{t},m} + 2\delta_{n+\hat{x}+\hat{y}+\hat{z}-\hat{t},m} + 2\delta_{n-\hat{x}+\hat{y}-\hat{z},m} + 4\delta_{n+\hat{y}-\hat{z},m} + 2\delta_{n+\hat{x}+\hat{y}-\hat{z},m} \\ + 4\delta_{n-\hat{x}-\hat{x},m} + 8\delta_{n-\hat{z},m} + 4\delta_{n+\hat{x}-\hat{y},m} + 2\delta_{n-\hat{x}+\hat{y}-\hat{z},m} + 4\delta_{n+\hat{y}-\hat{z},m} \\ + 4\delta_{n-\hat{x}+\hat{y},m} + 8\delta_{n-\hat{y},m} + 4\delta_{n+\hat{x}-\hat{y},m} + 8\delta_{n-\hat{x},m} - 240\delta_{n,m} + 8\delta_{n+\hat{x},m} \\ + 4\delta_{n-\hat{x}+\hat{y},m} + 8\delta_{n+\hat{x},m} + 4\delta_{n+\hat{x}+\hat{y},m} + 2\delta_{n-\hat{x}-\hat{y}+\hat{z},m} + 4\delta_{n-\hat{y}+\hat{z},m} \\ + 4\delta_{n-\hat{x}+\hat{y},m} + 8\delta_{n+\hat{z},m} + 4\delta_{n+\hat{x}+\hat{y},m} + 2\delta_{n-\hat{x}-\hat{y}+\hat{z},m} + 4\delta_{n-\hat{y}+\hat{z},m} \\ + \delta_{n-\hat{x}+\hat{y}-\hat{z}+\hat{t},m} + 2\delta_{n-\hat{y}-\hat{z}+\hat{t},m} + \delta_{n+\hat{x}-\hat{y}-\hat{z}+\hat{t},m} + 2\delta_{n-\hat{x}-\hat{y}+\hat{x},m} + 4\delta_{n-\hat{y}+\hat{z},m} \\ + \delta_{n-\hat{x}+\hat{y}-\hat{z}+\hat{t},m} + 2\delta_{n-\hat{y}-\hat{z}+\hat{t},m} + \delta_{n+\hat{x}+\hat{y}-\hat{z}+\hat{t},m} + 2\delta_{n-\hat{x}-\hat{y}+\hat{t},m} + 4\delta_{n-\hat{x}+\hat{x}+\hat{y}+\hat{x},m} \\ + \delta_{n-\hat{x}+\hat{y}-\hat{z}+\hat{t},m} + 2\delta_{n-\hat{y}+\hat{z}+\hat{t},m} + \delta_{n-\hat{x}+\hat{y}+\hat{z}+\hat{t},m} \\ + \delta_{n-\hat{x}+\hat{y}+\hat{z}+\hat{t},m} + 2\delta_{n-\hat{y}+\hat{z}+\hat{t},m} + \delta_{n+\hat{x}+\hat{y}+\hat{z}+\hat{t},m} + 2\delta_{n-\hat{x}+\hat{x}+\hat{t}+\hat{t},m} \\ + \delta_{n-\hat{x}+\hat{y}+\hat{z}+\hat{t},m} + 2\delta_{n-\hat{y}+\hat{z}+\hat{t},m} + \delta_{n+\hat{x}+\hat{y}+\hat{z}+\hat{t},m} \\ + \delta_{n-\hat{x}+\hat{y}+\hat{z}+\hat{t},m} + 2\delta_{n-\hat{y}+\hat{z}+\hat{t},m} + \delta_{n+\hat{x}+\hat{y}+\hat{z}+\hat{t},m} \\ + \delta_{n-\hat{x}+\hat{y}+\hat{z}+\hat{t},m}$$

momentum space

 $\Delta^{bri}(p) = 4\cos^2(p_x/2)\cos^2(p_y/2)\cos^2(p_z/2)\cos^2(p_t/2) - 4$

THE BRILLOUIN OPERATOR WITH GAUGE FIELDS

- take a average of all paths for every hopping term
- recursion algorithm of standard derivative and laplacian

$$D_{\mu}^{\pm} = U_{\mu} (n) \psi_{n+\hat{\mu}}^{\prime\prime\prime} \pm U_{\mu}^{\dagger} (n-\hat{\mu}) \psi_{n-\hat{\mu}}^{\prime\prime\prime}$$

EIGENVALUES ON NON-TRIVIAL GAUGE CONFIGURATIONS

=>highest mode and lowest modes(5) of $D^{\dagger}D$

EFFECTIVE MASS FOR PSEUDO SCALAR, VECTOR

 a^{-1} =2.81GeV, m₁₈=3.0GeV

 a^{-1} =1.973GeV, m_{1S}=3.0GeV

EFFECTIVE MASS WITH MOMENTUM FOR PSEUDO SCALAR PARTICLE a⁻¹=1.973GeV

Wilson

Improved Brillouin

 $a^{-1}=1.973$ GeV, $m_{1S}=3.0$ GeV

EFFECTIVE MASS WITH MOMENTUM FOR PSEUDO SCALAR PARTICLE a⁻¹=2.81GeV

Wilson

a⁻¹=2.81GeV, m₁₈=3.0GeV

Improved Brillouin

HYPERFINE SPLITTING OF IS STATE WITH QCD-TARO DATA

Topological charge and w₀ evolutions

