Pseudoscalar flavor-singlet mixing angle and decay constants from $N_f = 2 + 1 + 1$ WtmLQCD

K. Ottnad^a, C. Urbach^a, C. Michael^b

for ETM Collaboration

- a Helmholtz Institut für Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universität Bonn
- b Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool

LATTICE Conference on August 1, 2013

Outline

- Previous talk focused on masses; this talk on η, η' mixing
- Lattice setup
- Definition of mixing parameters
- Mixing angle(s)
- Decay constants
- Quark mass dependence, extrapolations
- lacktriangle Decay widths $\Gamma(\eta o \gamma \gamma)$, $\Gamma(\eta' o \gamma \gamma)$

Results for are still preliminary!

η,η' on the lattice

We work in the Wilson twisted mass $N_f = 2 + 1 + 1$ unitary setup:

$$\mathcal{S}_{F,I}[U,\chi_{I},\bar{\chi}_{I}] = a^{4} \sum_{X} \bar{\chi}_{I} \left(D_{W} + m_{0} + i \mu_{I} \gamma_{5} \tau^{3} \right) \chi_{I} \,, \qquad \qquad \text{Frezzotti et. al., JHEP 0108:058 (2001)}$$

$$\mathcal{S}_{F,h}\left[U,\chi_h,\bar{\chi}_h\right] = a^4\sum_{\chi}\bar{\chi}_h\left(D_W + m_0 + i\mu_\sigma\gamma_5\tau^1 + \mu_\delta\tau^3\right)\chi_h. \quad \stackrel{\textit{R. Frezzotti and G.C. Rossi,}}{\text{Nucl. Phys. Proc. Suppl.128 (2004)}}$$

- Automatic $\mathcal{O}(a)$ improvement $\to \mathcal{P}$ and \mathcal{F} at finite a
- lacktriangledown Heavy sector not flavor-diagonal ightarrow two additional propagators G_{cs}^{xy} , G_{sc}^{xy}
- ⇒ Much more contractions for correlation functions in heavy sector
- ⇒ Cannot apply tm variance reduction trick for heavy quarks

In the physical basis 2 γ -combinations ($i\gamma_5$, $i\gamma_0\gamma_5$) available; consider only $i\gamma_5$:

phys basis:
$$\eta_I^{phys} = \frac{1}{\sqrt{2}} \bar{\psi}_I i \gamma_5 \psi_I$$
, $\eta_{c,s}^{phys} = \bar{\psi}_h \left(\frac{1 \pm \tau^3}{2} i \gamma_5 \right) \psi_h = \begin{cases} \bar{c} i \gamma_5 c \\ \bar{s} i \gamma_5 s \end{cases}$,

tm basis:
$$\eta_l^{tm} = \frac{1}{\sqrt{2}} \bar{\chi}_l \left(-\tau^3 \right) \chi_l \quad \eta_{c,s}^{tm} = \frac{1}{2} \bar{\chi}_h \left(-\tau^1 \pm i \gamma_5 \tau^3 \right) \chi_h$$
.

⇒ heavy operators are a sum of scalars and pseudoscalars

Considering renormalization we have

$$\begin{split} &\eta^{tm}_{c,renormalized} = Z\left(\bar{\chi}_c i \gamma_5 \chi_c - \bar{\chi}_s i \gamma_5 \chi_s\right) / 2 - \left(\bar{\chi}_s \chi_c + \bar{\chi}_c \chi_s\right) / 2 \\ &\eta^{tm}_{s,renormalized} = Z\left(\bar{\chi}_s i \gamma_5 \chi_s - \bar{\chi}_c i \gamma_5 \chi_c\right) / 2 - \left(\bar{\chi}_s \chi_c + \bar{\chi}_c \chi_s\right) / 2 \;. \end{split}$$

$$\rightarrow$$
 Need $Z = \frac{Z_P}{Z_S}$; can avoid this for masses ...

Additional rotation of basis to disentangle "heavy" operators

$$\eta_{S,P} = \eta_c^{tm} \pm \eta_s^{tm} = \begin{cases} \frac{1}{\sqrt{2}} (\bar{\chi}_c \chi_s + \bar{\chi}_s \chi_c) \\ \frac{1}{\sqrt{2}} (\bar{\chi}_c i \gamma_5 \chi_c - \bar{\chi}_s i \gamma_5 \chi_s) \end{cases}.$$

In tm-basis we calculate:

$$\mathcal{C}^{\eta}(t) = \left(\begin{array}{ccc} \eta_{l}(t) \eta_{l}(0) & \eta_{l}(t) \eta_{S}(0) & \eta_{l}(t) \eta_{P}(0) \\ \eta_{S}(t) \eta_{l}(0) & \eta_{S}(t) \eta_{S}(0) & \eta_{S}(t) \eta_{P}(0) \\ \eta_{P}(t) \eta_{l}(0) & \eta_{P}(t) \eta_{S}(0) & \eta_{P}(t) \eta_{P}(0) \end{array} \right) \, .$$

Advantage: Number of contractions per matrix element reduced by a factor 4

Putting in Z and rotating back before solving GEVP:

 \Rightarrow Eigenvectors of $\mathcal{C}^{\eta}(t)$ give access to physical amplitudes \rightarrow mixing parameters

Mixing (I)

Decay constants are defined from axial-vector matrix elements (amplitudes)

$$\langle 0|A^{i}_{\mu}|P(p)\rangle = if_{P}^{i}p_{\mu}, \quad P = \eta, \eta',$$

either in singlet-octet (i=0,8) or quark flavor basis (i=1,s)

$$A^{0}_{\mu} = \frac{1}{\sqrt{6}} (\bar{u}\gamma_{\mu}\gamma_{5}u + \bar{d}\gamma_{\mu}\gamma_{5}d + \bar{s}\gamma_{\mu}\gamma_{5}s), \qquad A^{I}_{\mu} = \frac{1}{\sqrt{2}} (\bar{u}\gamma_{\mu}\gamma_{5}u + \bar{d}\gamma_{\mu}\gamma_{5}d),$$

$$A^{8}_{\mu} = \frac{1}{\sqrt{3}} (\bar{u}\gamma_{\mu}\gamma_{5}u + \bar{d}\gamma_{\mu}\gamma_{5}d - 2\bar{s}\gamma_{\mu}\gamma_{5}s), \qquad A^{s}_{\mu} = \bar{s}\gamma_{\mu}\gamma_{5}s.$$

 η and η' are not pure states in either basis; most general parametrization:

$$\begin{pmatrix} f_{\eta}^{8,I} & f_{\eta}^{0,s} \\ f_{\eta'}^{8,I} & f_{\eta'}^{0,s} \end{pmatrix} = \begin{pmatrix} f_{8,I}\cos\phi_{8,I} & -f_{0,s}\sin\phi_{0,s} \\ f_{8,I}\sin\phi_{8,I} & f_{0,s}\cos\phi_{0,s} \end{pmatrix}$$

From χ PT one expects

- $|\phi_8 \phi_0|$ is given by SU(3)_F breaking terms; NOT small $\frac{|\phi_8 \phi_0|}{|\phi_0 + \phi_0|} \checkmark 1$
- $|\phi_l \phi_s| \sim \mathcal{O}(1/N_C) \rightarrow \text{small (?) OZI correction } \frac{|\phi_l \phi_s|}{|\phi_l + \phi_s|} \ll 1$

Mixing (II)

On the lattice: quark flavor basis is "natural" choice

- Can check whether $|\phi_l \phi_s|$ is small!
- Expect that only one angle $\phi \approx \phi_l \approx \phi_s$ is required:

$$an^2(\phi) = -rac{f_I^{\eta'}f_S^{\eta}}{f_I^{\eta}f_S^{\eta'}},$$

Singlet-octet and quark flavor angles are related

$$\begin{split} \phi_0 = & \phi - \arctan(\sqrt{2}f_I/f_S) + \mathcal{O}(1/N_C), \\ \phi_8 = & \phi - \arctan(\sqrt{2}f_S/f_I) + \mathcal{O}(1/N_C). \end{split}$$

- In an SU(3)_F symmetric world: "ideal" angle $\phi_{SU(3)_F} \approx 54.7^{\circ}$
- Small angle difference in one basis does NOT imply small difference in other basis!

Unfortunately, the axial vector is too noisy to determine $\phi/\phi_{l,s}$ and $f_{l,s}$ directly

Mixing (III)

Pseudoscalar amplitude

$$h_{\rm P}^i = 2m_i < 0|P^i|{\rm P}>, \quad {\rm P} = \eta, \eta',$$

is related to axial vector via the anomaly equation (singlet-octet)

$$\partial^{\mu}A^{i}_{\mu}=\bar{\psi}(x)2MT^{i}i\gamma_{5}\psi(x)+\delta^{i0}\sqrt{2N_{f}}\omega(x)$$
.

In the quark flavor basis this leads to Phys.Rev. D58 (1998) 114006, Phys.Lett. B449 (1999) 339-346

$$\begin{pmatrix} P_{l,\eta} & P_{s,\eta} \\ P_{l,\eta'} & P_{s,\eta'} \end{pmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \mathrm{diag} \left(f_l M_{PS}^2, f_s \left(2M_K^2 - M_{PS}^2 \right) \right) \,.$$

- lacksquare This expression holds to LO χ PT
- Ignoring higher orders in $\mathcal{O}(1/N_C)$ (i.e. $\phi_l \approx \phi_s$) AND higher orders in masses
 - \rightarrow some χ PT-dependence compared to axial-vector approach

Two-photon decay widths

 η,η' -mixing parameters are related to anomaly ightarrow relevance for several processes

- The decays $\eta, \eta' \to \gamma \gamma$ are driven by the chiral anomaly
- At LO: Wess-Zumino-Wittten term

$$\mathcal{L}_{ ext{WZW}}^{ ext{LO}} = -rac{N_C lpha_{ ext{QED}}}{4\pi} F_{\mu\nu} ilde{F}^{\mu\nu} ext{tr}[ext{diag}(2/3, -1/3, -1/3) arphi^2].$$

Tree level prediction for decay widths reads

$$\begin{split} & \varGamma \left[\eta \to \gamma \gamma \right] = \frac{\alpha_{\text{QED}}^2}{576 \pi^3} M_\eta^3 \left[\frac{5}{f_l} \cos \phi - \frac{\sqrt{2}}{f_s} \sin \phi \right]^2, \\ & \varGamma \left[\eta' \to \gamma \gamma \right] = \frac{\alpha_{\text{QED}}^2}{576 \pi^3} M_{\eta'}^3 \left[\frac{5}{f_l} \sin \phi + \frac{\sqrt{2}}{f_s} \cos \phi \right]^2. \end{split}$$

Nucl.Phys.Proc.Suppl. 64 (1998) 223-231, Eur.Phys.J. C17 (2000) 623-649

- lacktriangledown OZI-suppressed terms are dropped ightarrow consistent with mixing scheme
- Expressions become rigorous in the chiral limit

Setup

- We use almost all ETMC $N_f = 2 + 1 + 1$ ensembles (16 ensembles)
- Three lattice spacings $a_A = 0.086 \,\mathrm{fm}$, $a_B = 0.078 \,\mathrm{fm}$ and $a_D = 0.061 \,\mathrm{fm}$
- Physical lattice size $L \ge 3$ fm for many ensembles; $L M_{PS} \ge 3.5$
- ho \sim 600 up to \sim 2500 gauge configuration per ensemble
- $\, \bullet \,$ Charged pion masses range from $\sim 230 \, \text{MeV}$ to $\sim 500 \, \text{MeV}$
- Bare m_s , m_c fixed for each β
- We remove excited contributions in conn correlators → previous talk

Mixing angle (I)

- Linear fit: $\phi = 46.0^{\circ}(0.9)_{\text{stat}}(2.7)_{\text{sys}}$
- lacktriangle Systematic error parametrizes ignorance towards m_s , a-dependence
- Compatible with old analysis $\phi = 44^{\circ}(5)_{stat}$ and other lattice and experimental results.

Ottnad et. al., JHEP 1211 (2012) 048

Mixing angle (II)

- Linear fits: $\phi_l = 47.7^{\circ}(1.2)_{\text{stat}}(4.1)_{\text{sys}}$ and $\phi_s = 44.3^{\circ}(0.9)_{\text{stat}}(3.0)_{\text{sys}}$
- Difference $\Delta \phi_{ls} = 2.8^{\circ} (1.1)_{stat} (2.6)_{sys}$ confirms smallness of OZI-corrections
 - \Rightarrow data well described by single angle in quark flavor basis

Decay constants - f_I

- f_l shows rather nonlinear m_l -dependence; scaling artifacts
- Most m_l -dependence cancels in the ratio $f_l/f_{\rm PS}$
- \bullet m_s -dependence negligible
- Linear fit: $f_I/f_{PS} = 0.859(7)_{stat}(64)_{sys}$
- Fit to finest lattice spacing only $f_I/f_{PS}|_D = 0.924(22)_{stat}$
- Phenomenology $f_I/f_{\pi}=1.07(2)$ Th. Feldmann, Int.J.Mod.Phys. A15 (2000) 159-207

Decay constants - f_s

- lacktriangledown f_s shows sizable m_s -dependence; possibly scaling artifacts
- $f_s/f_{\rm K}$ cancels most m_s,a -dependence; rather mild m_l -dependence
- Linear fit: $f_s/f_K = 1.166(11)_{stat}(31)_{sys}$
- Phenomenology $f_s/f_K=1.12(6)$ Th. Feldmann, Int. J. Mod. Phys. A15 (2000) 159-207

Two-photon decay widths

- Very preliminary; formulae used for decay widths are tree level only
- $\Gamma[\eta \to \gamma \gamma]$ shows nonlinear m_l -dependence; additional m_s -dependence?
- $\Gamma[\eta' \to \gamma \gamma]$ rather compatible exp. value; still some a-dependence (possibly also m_s -dependence...)

Need better control of scaling artifacts and m_a -dependence for definite results!

Summary and Outlook

- First lattice determination of η, η' decay constants
- (Preliminary) results:

$$\phi = 46.0^{\circ} (0.9)_{\text{stat}} (2.7)_{\text{sys}}, \qquad \phi_{\text{phenom}} = 39.3^{\circ} (1.0)$$

$$f_{\text{I}}/f_{\text{PS}} = 0.859(07)_{\text{stat}} (64)_{\text{sys}}, \qquad (f_{\text{I}}/f_{\text{PS}})_{\text{phenom}} = 1.07(2)$$

$$f_{\text{S}}/f_{\text{K}} = 1.166(11)_{\text{stat}} (31)_{\text{sys}}, \qquad (f_{\text{S}}/f_{\text{K}})_{\text{phenom}} = 1.12(6)$$

- Determination of ϕ , f_s/f_K with controlled systematics
- Our study confirms smallness of OZI corrections in quark flavor basis
- Still need better control of lattice artifacts for f_I/f_{PS}
- lacktriangledown Decay widths for $\eta,\eta' o 2\gamma$ accessible; need control of systematics

Further plans:

- Vary m_s for further ensembles
- Point-to-point correlators...
- lacktriangledown ... maybe get signal for axial vector ightarrow direct access to mixing parameters

Removal of excited states (I)

Problem: (Large) disconnected contributions to η'

- Signal for η' lost at small t
- Hardly plateau for $M_{\eta'}$; impossible to extract amplitudes
- Large contamination from excited states

Possible solutions:

- Use much larger statistics → very expensive
- \bigcirc Increase operator basis \rightarrow not easily possible, axial vector very noisy
- point-to-point correlators; stoch. distillation → will be tested
- \bullet ... or find some other method to extract quantities at small t

Removal of excited states (II)

- Ignore charm quark
- Consider $\mathcal{M}^2 = \operatorname{diag}(M_{\eta}^2, M_{\eta'}^2)$ in quark flavor basis

$$\mathcal{M}^2 = \left(\begin{array}{cc} M_{II}^2 + 2\Delta_{II} & \sqrt{2}\Delta_{Is} \\ \sqrt{2}\Delta_{Is} & M_{ss}^2 + \Delta_{ss} \end{array} \right)$$

- M_{II}, M_{ss}: masses of flavor non-singlet eigenstates (connected only)
- lacktriangledown Δ_{II} , Δ_{Is} and Δ_{ss} give large corrections (disconnected)

Assumption:

Disconnected diagrams couple only to η , η'

- Replace connected contributions by respective ground state contributions
- If assumption is correct we should see

a plateau at very low t

Comparison of results using improved method

Two-photon decay widths (II)

