Leading-order hadronic contribution to the anomalous magnetic moment of the muon from $N_f = 2 + 1 + 1$ twisted mass fermions

Grit Hotzel1

in collaboration with Florian Burger1, Xu Feng2, Karl Jansen3, Marcus Petschlies4, Dru B. Renner5

1Humboldt University Berlin, Germany

2KEK, Japan

3NIC, DESY Zeuthen, Germany

4The Cyprus institute, Cyprus

5Jefferson Lab, USA

Lattice 2013, Mainz, Germany
Why the muon’s anomalous magnetic moment?

- The anomalous magnetic moment of the muon, a_μ, can be measured very precisely: [B. Lee Roberts, Chinese Phys. C 34, 2010]

\[
a_\mu^{\text{exp}} = 116592089(63) \times 10^{-11}
\]

\[
a_\mu^{\text{SM}} = 116591828(49) \times 10^{-11}
\]

[Hagiwara et al., J. Phys. G38, 2011]

There is a $\approx 3\sigma$ discrepancy between a_μ^{exp} and a_μ^{SM}:

\[
a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = 261(80) \times 10^{-11}
\]
Charm quark necessary to reach required precision

\[a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 261(80) \times 10^{-11} \]

 \[a_{\mu}^{\text{hvp,c}} = 144(1) \times 10^{-11} \]
 \[a_{\mu}^{\text{hlbl}} = 105(26) \times 10^{-11} \]
- And also to electroweak contribution [Jegerlehner, Nyffeler, Phys. Rept. 477, 2009]
 \[a_{\mu}^{\text{EW}} = 153(2) \times 10^{-11} \]
Leading hadronic contribution a_{μ}^{hvp}

\[a_{\mu}^{\text{QCD}} = a_{\mu}^{\text{lo,hvp}} + a_{\mu}^{\text{ho,hvp}} + a_{\mu}^{\text{lbl}} \]

- can be computed directly in Euclidean space-time [T. Blum, PRL 91, 2003]

\[a_{\mu}^{\text{hvp}} = \alpha^2 \int_0^{\infty} \frac{dQ^2}{Q^2} w \left(\frac{Q^2}{m_{\mu}^2} \right) \Pi_R(Q^2) \]

where $\Pi_R(Q^2) = \Pi(Q^2) - \Pi(0)$

- main ingredient: hadronic vacuum polarisation tensor

\[\Pi_{\mu\nu}(Q) = \int d^4 x \, e^{iQ \cdot (x-y)} \langle J_{\mu}^{\text{em}}(x) J_{\nu}^{\text{em}}(y) \rangle = (Q_\mu Q_\nu - Q^2 g_{\mu\nu}) \Pi(Q^2) \]

with

\[J_{\mu}^{\text{em}}(x) = \frac{2}{3} \bar{u}(x) \gamma_\mu u(x) - \frac{1}{3} \bar{d}(x) \gamma_\mu d(x) + \frac{2}{3} \bar{c}(x) \gamma_\mu c(x) - \frac{1}{3} \bar{s}(x) \gamma_\mu s(x) \]
Mixed-action set-up

- configurations generated by ETMC [Baron et al., JHEP 1006, 2010]

\[S_F[\chi, \chi^\ast, U] = \sum_x \chi^\ast(x) \left[D_W + m_0 + i\mu_q\gamma_5\tau^3 \right] \chi(x) \]

\[S_F[\chi_h, \chi_h^\ast, U] = \sum_x \chi_h^\ast(x) \left[D_W + m_0 + i\mu_\sigma\gamma_5\tau^1 + \mu_\delta\tau^3 \right] \chi_h(x) \]

- heavy valence quarks: Osterwalder-Seiler action [Frezzotti, Rossi, JHEP 0410, 2004]

\[S_F[\chi_h, \chi_h^\ast, U] = \sum_x \chi_h^\ast(x) \left[D_W + m_0 + i\left(\begin{array}{cc} \mu_c & 0 \\ 0 & -\mu_s \end{array} \right) \gamma_5 \right] \chi_h(x) \]

- tune bare mass parameters \(\mu_{c/s} \) such that physical kaon and D-meson masses are reproduced
The $N_f = 2 + 1 + 1$ ensembles

<table>
<thead>
<tr>
<th>Ensemble</th>
<th>β</th>
<th>a[fm]</th>
<th>$L^3 \times T$</th>
<th>m_{PS}[MeV]</th>
<th>L[fm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15.48</td>
<td>2.10</td>
<td>0.061</td>
<td>$48^3 \times 96$</td>
<td>227</td>
<td>2.9</td>
</tr>
<tr>
<td>D30.48</td>
<td>2.10</td>
<td>0.061</td>
<td>$48^3 \times 96$</td>
<td>318</td>
<td>2.9</td>
</tr>
<tr>
<td>D45.32sc</td>
<td>2.10</td>
<td>0.061</td>
<td>$32^3 \times 64$</td>
<td>387</td>
<td>1.9</td>
</tr>
<tr>
<td>B25.32t</td>
<td>1.95</td>
<td>0.078</td>
<td>$32^3 \times 64$</td>
<td>274</td>
<td>2.5</td>
</tr>
<tr>
<td>B35.32</td>
<td>1.95</td>
<td>0.078</td>
<td>$32^3 \times 64$</td>
<td>319</td>
<td>2.5</td>
</tr>
<tr>
<td>B35.48</td>
<td>1.95</td>
<td>0.078</td>
<td>$48^3 \times 96$</td>
<td>314</td>
<td>3.7</td>
</tr>
<tr>
<td>B55.32</td>
<td>1.95</td>
<td>0.078</td>
<td>$32^3 \times 64$</td>
<td>393</td>
<td>2.5</td>
</tr>
<tr>
<td>B75.32</td>
<td>1.95</td>
<td>0.078</td>
<td>$32^3 \times 64$</td>
<td>456</td>
<td>2.5</td>
</tr>
<tr>
<td>B85.24</td>
<td>1.95</td>
<td>0.078</td>
<td>$24^3 \times 48$</td>
<td>491</td>
<td>1.9</td>
</tr>
<tr>
<td>A30.32</td>
<td>1.90</td>
<td>0.086</td>
<td>$32^3 \times 64$</td>
<td>283</td>
<td>2.8</td>
</tr>
<tr>
<td>A40.32</td>
<td>1.90</td>
<td>0.086</td>
<td>$32^3 \times 64$</td>
<td>323</td>
<td>2.8</td>
</tr>
<tr>
<td>A50.32</td>
<td>1.90</td>
<td>0.086</td>
<td>$32^3 \times 64$</td>
<td>361</td>
<td>2.8</td>
</tr>
</tbody>
</table>
First $N_f = 2$ configurations at the physical point

More details: Talk by Bartosz Kostrzewa, Monday, 16:50

- again use Iwasaki action in gauge sector
- add clover-term to twisted mass action for non-degenerate fermion doublet

$$S_F[\chi, \bar{\chi}, U] = \sum_x \bar{\chi}(x) \left[D_W + m_0 + i\mu q\gamma_5\tau^3 \right] \chi(x)$$

$$+ c_{SW} \sum_x \bar{\chi}(x) \left[i\frac{1}{4} \sigma_{\mu\nu} F_{\mu\nu} \right] \chi(x)$$

- very preliminary parameters of first ensemble:

<table>
<thead>
<tr>
<th>β</th>
<th>c_{SW}</th>
<th>$a[\text{fm}]$</th>
<th>$L^3 \times T$</th>
<th>$m_{PS}[\text{MeV}]$</th>
<th>$L[\text{fm}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10</td>
<td>1.57551</td>
<td>0.096</td>
<td>$48^3 \times 96$</td>
<td>128</td>
<td>4.6</td>
</tr>
</tbody>
</table>
How the observables are determined

- use conserved (point-split) vector current

\[J^C_\mu(x) = \frac{1}{2} \left(\bar{\chi}(x + \hat{\mu})(1 + \gamma_\mu)U^\dagger_\mu(x)Q_{el}\chi(x)
- \bar{\chi}(x)(1 - \gamma_\mu)U_\mu(x)Q_{el}\chi(x + \hat{\mu}) \right) \]

where \(Q_{el} = \text{diag}(\frac{2}{3}, -\frac{1}{3}) \)

- use redefinition \cite{Feng, Jansen, Petschlies, Renner, PRL 107, 2011}

\[a^{hvp}_\mu = \alpha^2 \int_0^{\infty} \frac{dQ^2}{Q^2} w \left(\frac{Q^2}{H^2} \frac{H^2_{phys}}{m^2_\mu} \right) \Pi_R(Q^2) \]

which goes to \(a^{hvp}_\mu \) for \(m_{PS} \to m_\pi \), i.e. when \(H \to H_{phys} \)

- effectively, redefinition of muon mass

\[m_{\mu} = m_{\mu} \cdot \frac{H}{H_{phys}} \]

- in the following will always use \(H = m_V \) - \(\rho \)-meson mass
Fitting the hadronic vacuum polarisation function

- have $\Pi(\hat{Q}^2)$ depending on discrete momenta
- to obtain smooth function fit this for each flavour to

$$\Pi(Q^2) = (1 - \theta(Q^2 - Q^2_{\text{match}}))\Pi_{\text{low}}(Q^2) + \theta(Q^2 - Q^2_{\text{match}})\Pi_{\text{high}}(Q^2)$$

with

$$\Pi_{\text{low}}(Q^2) = \sum_{i=1}^{M} g_i^2 \frac{m_i^2}{Q^2 + m_i^2} + \sum_{j=0}^{N-1} a_j(Q^2)^j$$

and

$$\Pi_{\text{high}}(Q^2) = \sum_{k=0}^{C-1} c_k(Q^2)^k + \left(\sum_{l=0}^{B-1} b_l(Q^2)^l\right) \cdot \log(Q^2)$$

- different matching conditions and functions possible
Light quark contribution on $N_f = 2 + 1 + 1$ sea

\[H = m_{\nu} \]

- $N_f = 2 + 1 + 1$ result: $a_{\mu, ud}^{hvp} = 5.67(11) \cdot 10^{-8}$
- $N_f = 2$ result: $a_{\mu, ud}^{hvp} = 5.72(16) \cdot 10^{-8}$

[Feng, Jansen, Petschlies, Renner, PRL 107, 2011]
Light quark contribution on $N_f = 2 + 1 + 1$ sea

Comparing to preliminary $N_f = 2$ result at physical pion mass

$H = m_V$

$H = 1$

- $N_f = 2 + 1 + 1$ result: $a_{\mu, ud}^{\text{hvp}} = 5.67(11) \cdot 10^{-8}$
- new $N_f = 2$ result at physical point: $a_{\mu, ud}^{\text{hvp}} = 5.55(70) \cdot 10^{-8}$
Adding the strange quark in the valence sector

- For strange quark lattice artefacts have to be taken into account

\[a^{\text{hvp}}_{\mu,uds}(m_{\text{PS}}, a) = A + B \, m_{\text{PS}}^2 + C \, a^2 \]

with fit parameters \(A, B, C \)

Light sector: cannot discriminate \(a^2 \) effects
Three-flavour contribution on $N_f = 2 + 1 + 1$ sea

- $N_f = 2 + 1 + 1$ result: $a_{\mu,uds}^{\text{hvp}} = 6.55(21) \cdot 10^{-8}$
- three-flavour result extracted from dispersive analysis of $[\text{Jegerlehner, Szafron, Eur. Phys. J C71, 2011}]$: $a_{\mu,uds}^{\text{hvp}} = 6.79(05) \cdot 10^{-8}$
The four-flavour contribution on $N_f = 2 + 1 + 1$ sea

$H = m_V$

- $N_f = 2 + 1 + 1$ result: $a_{\mu}^{\text{hvp}} = 6.74(21) \cdot 10^{-8}$
- result from dispersive analysis: [Jegerlehner, Szafron, Eur. Phys. J C71, 2011] $a_{\mu}^{\text{hvp}} = 6.91(05) \cdot 10^{-8}$
Systematic uncertainties

- from choosing fit ranges for vector mesons:
 \[\Delta_V = 0.13 \cdot 10^{-8} \]

- from choosing different number of terms in fit function:
 \[\Delta_{MNBC} = 0.12 \cdot 10^{-8} \]

- found to be negligible: \(m_{PSL} > 3.8 \), \(m_{PS} < 400 \text{ MeV} \), varying matching momentum between \([1 \text{ GeV}^2, 3 \text{ GeV}^2]\)
- not quantified yet: disconnected contributions, wrong sea quark masses
- preliminary final result:
 \[a_{\mu}^{\text{hvp}} = 6.74(21)(18) \cdot 10^{-8} \]
Comparison of results for a_h^{μ}

- a_h^{μ} in 10^{-8} for different numbers of valence quarks:

<table>
<thead>
<tr>
<th></th>
<th>u,d</th>
<th>u, d, s</th>
<th>u, d, s, c</th>
</tr>
</thead>
<tbody>
<tr>
<td>this work</td>
<td>5.67(11)</td>
<td>6.55(21)</td>
<td>6.74(27)</td>
</tr>
<tr>
<td>ETMC 2011</td>
<td>5.72(16)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mainz 2011</td>
<td>5.46(66)</td>
<td>6.18(64)</td>
<td>-</td>
</tr>
<tr>
<td>RBC-UKQCD 2011</td>
<td>-</td>
<td>6.41(33)</td>
<td>-</td>
</tr>
<tr>
<td>HLS estimate 2011</td>
<td>5.59(04)</td>
<td>6.71(05)</td>
<td>6.83(05)</td>
</tr>
<tr>
<td>(dispersive analysis + flavour weighting)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ETMC 2011: [Feng, Jansen, Petschlies, Renner, PRL 107, 2011]
Mainz 2011: [Della Morte, Jäger, Jüttner, Wittig, JHEP 1203, 2012]
Summary

- First $N_f = 2 + 1 + 1$ lattice calculation of a_{μ}^{hvp} gives compatible result with dispersive analyses.

- Modified method [Feng, Jansen, Petschlies, Renner, PRL 107, 2011] works for $N_f = 2 + 1 + 1$ computation.

- Chiral extrapolation in light sector to be checked with computation at physical pion mass.
Outlook

- improve data by more statistics, especially in heavy sector, and all-mode-averaging
- use Padé approximants
- disconnected contributions
- more $N_f = 2$ configurations at physical point
- $N_f = 2 + 1 + 1$ configurations at physical point, probably several lattice spacings needed
- include isospin breaking effects
- different observables: $\Delta \alpha_{\text{QED}}^{\text{hvp}}$, Adler function, weak mixing angle, S-parameter
- light-by-light scattering
Why it works

- **redefinition** [Feng, Jansen, Petschlies, Renner, PRL 107, 2011]

\[
a_{\mu}^{\text{hvp}} = \alpha_0^2 \int_0^{\infty} \frac{dQ^2}{Q^2} w \left(\frac{Q^2}{H^2} \frac{H^2_{\text{phys}}}{m_{\mu}^2} \right) \Pi_R(Q^2)
\]

which goes to \(a_{\mu}^{\text{hvp}} \) for \(m_{PS} \rightarrow m_\pi \), i.e. when \(H \rightarrow H_{\text{phys}} \)

- **effectively**, redefinition of muon mass

\[
m_{\mu} = m_{\mu} \cdot \frac{H}{H_{\text{phys}}}
\]

- **leading vector meson contribution**

\[
a_{\mu}^{\text{hvp}} \propto \alpha^2 g_V^2 \frac{m_{\mu}^2}{m_V^2}
\]

\(\Rightarrow \) strong dependence on \(m_{PS} \) via \(m_V \)
Comparison with Padé approximants

- vacuum polarisation integrated up to $Q^2_{\text{max}} = 1.5 \, \text{GeV}^2$:

will use Padé approximants when chiral extrapolation no longer needed
Example for standard fit

\[\beta = 1.95, \frac{L}{a} = 32, \mu_{\text{light}} = 0.0025 \]