Leading-order hadronic contribution to the anomalous magnetic moment of the muon from $N_f = 2 + 1 + 1$ twisted mass fermions

Grit Hotzel¹ in collaboration with Florian Burger¹, Xu Feng², Karl Jansen³, Marcus Petschlies⁴, Dru B. Renner⁵

¹Humboldt University Berlin, Germany

²KEK, Japan

³NIC, DESY Zeuthen, Germany

⁴The Cyprus institute, Cyprus

⁵Jefferson Lab, USA

Lattice 2013, Mainz, Germany

Grit Hotzel (HU Berlin)

The muon g-2

02/08/13 1 / 18

Why the muon's anomalous magnetic moment?

• The anomalous magnetic moment of the muon, a_{μ} , can be measured very precisely: [B. Lee Roberts, Chinese Phys. C 34, 2010]

$$a_{\mu}^{ ext{exp}} = 116592089(63) imes 10^{-11} \ a_{\mu}^{ ext{SM}} = 116591828(49) imes 10^{-11}$$

[Hagiwara et al., J. Phys. G38, 2011]

There is a $\approx 3\sigma$ discrepancy between a_{μ}^{\exp} and a_{μ}^{SM} :

$$a_{\mu}^{
m exp} - a_{\mu}^{
m SM} =$$
 261(80) $imes$ 10⁻¹¹

Charm quark necessary to reach required precision

Current discrepancy [Hagiwara et al., J. Phys. G38, 2011]

$$a_{\mu}^{
m exp} - a_{\mu}^{
m SM} =$$
 261(80) $imes$ 10⁻¹¹

charm quark contribution computed in perturbation theory [Bodenstein,

Dominguez, Schilcher, Phys.Rev. D85, 2012]

$$a_{\mu}^{
m hvp,c} =$$
 144(1) $imes$ 10 $^{-11}$

comparable to hadronic light-by-light scattering contribution

[Prades, de Rafael, Vainshtein, arXiv:0901.0306 [hep-ph], 2009]

$$a_{\mu}^{
m hlbl} = 105(26) imes 10^{-11}$$

• and also to electroweak contribution [Jegerlehner, Nyffeler, Phys. Rept. 477, 2009]

$$a_{\mu}^{
m EW} = 153(2) imes 10^{-11}$$

Leading hadronic contribution a_{μ}^{hvp}

$$m{a}_{\mu}^{ ext{QCD}} = m{a}_{\mu}^{ ext{lo,hvp}} + m{a}_{\mu}^{ ext{ho,hvp}} + m{a}_{\mu}^{ ext{lbl}}$$

• can be computed directly in Euclidean space-time [T. Blum, PRL 91, 2003]

$$a_{\mu}^{\mathrm{hvp}} = lpha^2 \int_0^\infty rac{dQ^2}{Q^2} w\left(rac{Q^2}{m_{\mu}^2}
ight) \Pi_{\mathrm{R}}(Q^2)$$

where
$$\Pi_{\mathrm{R}}(\mathcal{Q}^2)=\Pi(\mathcal{Q}^2)-\Pi(0)$$

main ingredient: hadronic vacuum polarisation tensor

μ

$$\Pi_{\mu
u}(Q) = \int d^4x \, e^{iQ\cdot(x-y)} \langle J^{\rm em}_{\mu}(x) J^{\rm em}_{
u}(y)
angle = (Q_{\mu}Q_{
u} - Q^2g_{\mu
u})\Pi(Q^2)$$

with

μ

$$J^{\text{em}}_{\mu}(x) = \frac{2}{3}\overline{u}(x)\gamma_{\mu}u(x) - \frac{1}{3}\overline{d}(x)\gamma_{\mu}d(x) + \frac{2}{3}\overline{c}(x)\gamma_{\mu}c(x) - \frac{1}{3}\overline{s}(x)\gamma_{\mu}s(x)$$

Mixed-action set-up

- configurations generated by ETMC [Baron et al., JHEP 1006, 2010]
- light quarks: twisted mass action for mass-degenerate fermion doublet [Frezzotti, Rossi, JHEP 0408, 2004]

$$S_{F}[\chi,\overline{\chi},U] = \sum_{x} \overline{\chi}(x) \left[D_{W} + m_{0} + i\mu_{q}\gamma_{5}\tau^{3} \right] \chi(x)$$

 heavy sea quarks: twisted mass action for non-degenerate fermion doublet [Frezzotti, Rossi, Nucl. Phys. Proc. Suppl. 128, 2004]

$$\mathcal{S}_{\mathcal{F}}[\chi_h, \overline{\chi}_h, U] = \sum_{x} \overline{\chi}_h(x) \left[D_W + m_0 + i\mu_\sigma \gamma_5 \tau^1 + \mu_\delta \tau^3 \right] \chi_h(x)$$

heavy valence quarks: Osterwalder-Seiler action

[Frezzotti, Rossi, JHEP 0410, 2004]

$$S_{F}[\chi_{h},\overline{\chi}_{h},U] = \sum_{x} \overline{\chi}_{h}(x) \left[D_{W} + m_{0} + i \begin{pmatrix} \mu_{c} & 0 \\ 0 & -\mu_{s} \end{pmatrix} \gamma_{5} \right] \chi_{h}(x)$$

 tune bare mass parameters μ_{c/s} such that physical kaon and D-meson masses are reproduced

Ensemble	β	a [fm]	$L^3 imes T$	m _{PS} [MeV]	<i>L</i> [fm]
D15.48	2.10	0.061	$48^3 imes 96$	227	2.9
D30.48	2.10	0.061	$48^3 imes 96$	318	2.9
D45.32sc	2.10	0.061	$32^3 imes 64$	387	1.9
B25.32t	1.95	0.078	$32^3 imes 64$	274	2.5
B35.32	1.95	0.078	$32^3 imes 64$	319	2.5
B35.48	1.95	0.078	$48^3 imes 96$	314	3.7
B55.32	1.95	0.078	$32^3 imes 64$	393	2.5
B75.32	1.95	0.078	$32^3 imes 64$	456	2.5
B85.24	1.95	0.078	$24^3 imes 48$	491	1.9
A30.32	1.90	0.086	$\mathbf{32^3}\times64$	283	2.8
A40.32	1.90	0.086	$32^3 imes 64$	323	2.8
A50.32	1.90	0.086	$32^3 imes 64$	361	2.8

First $N_f = 2$ configurations at the physical point

More details: Talk by Bartosz Kostrzewa, Monday, 16:50

- again use Iwasaki action in gauge sector
- add clover-term to twisted mass action for non-degenerate fermion doublet

$$\begin{split} \mathcal{S}_{F}[\chi,\overline{\chi},U] &= \sum_{x} \overline{\chi}(x) \left[\mathcal{D}_{W} + m_{0} + i\mu_{q}\gamma_{5}\tau^{3} \right] \chi(x) \\ &+ c_{\mathrm{SW}} \sum_{x} \overline{\chi}(x) \left[\frac{i}{4} \sigma_{\mu\nu} \mathcal{F}_{\mu\nu} \right] \chi(x) \end{split}$$

very preliminary parameters of first ensemble:

β	$c_{ m SW}$	a [fm]	$L^3 imes T$	<i>m_{PS}</i> [MeV]	<i>L</i> [fm]
2.10	1.57551	0.096	$48^3 \times 96$	128	4.6

How the observables are determined

• use conserved (point-split) vector current

$$\begin{aligned} J^{C}_{\mu}(x) = & \frac{1}{2} \left(\overline{\chi}(x+\hat{\mu})(\mathbb{1}+\gamma_{\mu}) U^{\dagger}_{\mu}(x) Q_{\mathrm{el}}\chi(x) \right. \\ & - \overline{\chi}(x)(\mathbb{1}-\gamma_{\mu}) U_{\mu}(x) Q_{\mathrm{el}}\chi(x+\hat{\mu}) \right) \end{aligned}$$

where $Q_{\rm el} = {\rm diag}(\frac{2}{3}, -\frac{1}{3})$

• USe redefinition [Feng, Jansen, Petschlies, Renner, PRL 107, 2011]

$$a_{\overline{\mu}}^{\mathrm{hvp}} = lpha^2 \int_0^\infty rac{dQ^2}{Q^2} w \left(rac{Q^2}{H^2} rac{H_{\mathrm{phys}}^2}{m_\mu^2}
ight) \Pi_{\mathrm{R}}(Q^2)$$

which goes to a_{μ}^{hvp} for $m_{PS} \rightarrow m_{\pi}$, i.e. when $H \rightarrow H_{\text{phys}}$ • effectively, redefinition of muon mass

$$m_{\overline{\mu}} = m_{\mu} \cdot rac{H}{H_{
m phys}}$$

• in the following will always use $H = m_V - \rho$ -meson mass

Fitting the hadronic vacuum polarisation function

- have $\Pi(\hat{Q}^2)$ depending on discrete momenta
- to obtain smooth function fit this for each flavour to

$$\Pi(Q^2) = (1 - heta(Q^2 - Q^2_{ ext{match}}))\Pi_{ ext{low}}(Q^2) + heta(Q^2 - Q^2_{ ext{match}})\Pi_{ ext{high}}(Q^2)$$

with

I

$$\Pi_{\text{low}}(Q^2) = \sum_{i=1}^{M} g_i^2 \frac{m_i^2}{Q^2 + m_i^2} + \sum_{j=0}^{N-1} a_j (Q^2)^j$$

and

$$\Pi_{\text{high}}(Q^2) = \sum_{k=0}^{C-1} c_k (Q^2)^k + \left(\sum_{l=0}^{B-1} b_l (Q^2)^l\right) \cdot \log(Q^2)$$

- different matching conditions and functions possible
- Padé approximants [Aubin, Blum, Golterman, Peris, Phys.Rev. D86, 2012] Under investigation

Light quark contribution on $N_f = 2 + 1 + 1$ sea

 $H = m_V$

[Feng, Jansen, Petschlies, Renner, PRL 107, 2011]

Light quark contribution on $N_f = 2 + 1 + 1$ sea

Comparing to preliminary $N_f = 2$ result at physical pion mass

• $N_f = 2 + 1 + 1$ result: $a_{\mu, ud}^{hvp} = 5.67(11) \cdot 10^{-8}$

• new $N_f = 2$ result at physical point: $a_{\mu,ud}^{hvp} = 5.55(70) \cdot 10^{-8}$

Adding the strange quark in the valence sector

 for strange quark lattice artefacts have to be taken into account

• for combined chiral and continuum extrapolation will use

$$a^{
m hvp}_{\mu,
m uds}(m_{
m PS},a) = A + B \; m^2_{
m PS} + C \; a^2$$

with fit parameters A, B, C

Grit Hotzel (HU Berlin)

light sector: cannot discriminate a^2 effects

Three-flavour contribution on $N_f = 2 + 1 + 1$ sea

The four-flavour contribution on $N_f = 2 + 1 + 1$ sea

• $N_f = 2 + 1 + 1$ result: $a_{\mu}^{\rm hvp} = 6.74(21) \cdot 10^{-8}$

• result from dispersive analysis: [Jegerlehner, Szafron, Eur. Phys. J C71, 2011] $a_{\mu}^{hvp}=6.91(05)\cdot10^{-8}$

• from choosing fit ranges for vector mesons:

 $\Delta_V = 0.13 \cdot 10^{-8}$

• from choosing different number of terms in fit function:

$$\Delta_{MNBC} = 0.12 \cdot 10^{-8}$$

- found to be negligible: m_{PS}L > 3.8, m_{PS} < 400 MeV, varying matching momentum between [1 GeV², 3 GeV²]
- not quantified yet: disconnected contributions, wrong sea quark masses
- preliminary final result:

$$a_{\mu}^{
m hvp}=$$
 6.74(21)(18) \cdot 10⁻⁸

• a_{μ}^{hvp} in 10⁻⁸ for different numbers of valence quarks:

	u,d	u, d, s	u, d, s, c
this work	5.67(11)	6.55(21)	6.74(27)
ETMC 2011	5.72(16)	-	-
Mainz 2011	5.46(66)	6.18(64)	-
RBC-UKQCD 2011	-	6.41(33)	-
HLS estimate 2011	5.59(04)	6.71(05)	6.83(05)
(dispersive analysis			
+ flavour weighting)			

ETMC 2011: [Feng, Jansen, Petschlies, Renner, PRL 107, 2011]

Mainz 2011: [Della Morte, Jäger, Jüttner, Wittig, JHEP 1203, 2012]

RBC-UKQCD 2011: [Boyle, Del Debbio, Kerrane, Zanotti, Phys. Rev. D85, 2012]

HLS estimate 2011: [Benayoun, David, DelBuono, Jegerlehner, Eur. Phys. J. C72, 2012]

Summary

• First $N_f = 2 + 1 + 1$ lattice calculation of a_{μ}^{hvp} gives compatible result with dispersive analyses.

- Modified method [Feng, Jansen, Petschlies, Renner, PRL 107, 2011] Works for $N_f = 2 + 1 + 1$ computation.
- Chiral extrapolation in light sector to be checked with computation at physical pion mass.

- improve data by more statistics, especially in heavy sector, and all-mode-averaging
- use Padé approximants
- disconnected contributions
- more $N_f = 2$ configurations at physical point
- *N_f* = 2 + 1 + 1 configurations at physical point, probably several lattice spacings needed
- include isospin breaking effects
- different observables: $\Delta \alpha_{\rm QED}^{\rm hvp}$, Adler function, weak mixing angle, S-parameter
- light-by-light scattering

Why it works

• redefinition [Feng, Jansen, Petschlies, Renner, PRL 107, 2011]

$$a_{\overline{\mu}}^{\text{hvp}} = \alpha_0^2 \int_0^\infty \frac{dQ^2}{Q^2} w \left(\frac{Q^2}{H^2} \frac{H_{\text{phys}}^2}{m_{\mu}^2}\right) \Pi_{\text{R}}(Q^2)$$

which goes to $a_{\mu}^{
m hvp}$ for $m_{PS} o m_{\pi}$, i.e. when $H o H_{
m phys}$

effectively, redefinition of muon mass

$$m_{\overline{\mu}} = m_{\mu} \cdot rac{H}{H_{
m phys}}$$

$$a_{\mu}^{
m hvp} \propto lpha^2 g_V^2 rac{m_{\mu}^2}{m_V^2}$$

 \Rightarrow strong dependence on m_{PS} via m_V

Comparison with Padé approximants

- Padé approximants model-independent, systematically improvable way of fitting vacuum polarisation [Aubin et al., Phys.Rev. D86, 2012]
- vacuum polarisation integrated up to $Q_{max}^2 = 1.5 \, \text{GeV}^2$:

 will use Padé approximants when chiral extrapolation no longer needed

Example for standard fit

