Chiral behaviour of the pion decay constant in $N_f = 2 \text{ QCD}$

Stefano Lottini ALPHA Collaboration

NIC, DESY Zeuthen

Lattice 2013 - Mainz

August 2, 2013

Stefano Lottini (ALPHA Coll.)

Chiral behaviour of f_{π} in $N_f = 2$

< 61 b

∃ ► 4 Ξ

Introduction

- Two-flavour lattice QCD
 - probe for low-energy regime
 - smaller and smaller masses accessible
- Recently, new CLS ensembles with
 - low m_{π}
 - small lattice spacing
- This is a study of f_{π} :
 - chiral behaviour
 - $\bullet \ \rightarrow SU(2)$ chiral PT low-energy constants

(So far, ALPHA analysed the chiral properties of $f_{\mathcal{K}}$ [NPB 865, 397 (2012)])

Ensembles, statistics

- O(a)-improved $N_f = 2$ Wilson lattice action, implementing
 - Domain-Decomposition [Lüscher 2005]
 - Mass-Preconditioning [Marinkovic, Schäfer 2010]
- New CLS ensembles with lighter pions
 - 10 to 20 stochastic sources/config. for correlators
 - increased statistics on already-existing ensembles

- Renormalisation factors as in [ALPHA 2012]:
 - b-factors from one-loop PT [Sint, Weisz 1997]
 - Z_A, Z_P determined nonperturbatively.

Data analysis

- Correlations are propagated to the final quantities
- Sophisticated error analysis includes slow-mode contributions [ALPHA 2010]:

• A large contribution to the error from Z_A factor, e.g. for F_{π} :

Ensembles

- $m_{\pi}L$ range is: 4.0 7.7
- Lowest m_{π} is 192 MeV
- Largest point has $N_{\rm cnfg}/\tau_{\rm exp} = 122$
- All systems have $L_T = 2L$ and periodic b.c.

• Global fits with range cut to

 $m_{\pi} < \ 650, \ 500, \ 390, \ 345 \ \ {
m MeV}$

• Systematic errors from:

- different fit functions
- fit-cutoff dependence
- higher orders estimate
- Variable employed:

$$\widetilde{y}_1 = \frac{m_\pi^2}{8\pi^2 f_\pi^2} \in [0.026:0.142]$$
 (phys. point: $\widetilde{y}_\pi \simeq 0.01353$

f_{π} : *SU*(2) Chiral perturbation theory

- Strategy: find $F_{\pi}^{\text{phys}}(\beta) = a(\beta) f_{\pi}^{\text{phys}}$ to set the scale (here, $f_{\pi}^{\text{phys}} \sim 130.4 \text{ MeV}$)
- Expected chiral behaviour:

 $f_{\pi}(\widetilde{y}_1) = f\{1 + \alpha_4 \widetilde{y}_1 - \widetilde{y}_1 \log \widetilde{y}_1 + \ldots\}$ [Gasser & Leutwyler '80s]

• $\alpha_4 \rightarrow \overline{\ell}_4$, one of the low-energy constants of *SU*(2) χ PT:

$$\overline{\ell}_i \equiv \log rac{\Lambda_i^2}{\mu^2} \qquad (ext{here } \mu \leftarrow m_\pi^{ ext{phys}})$$

イロト イヨト イラト イラト

 f_{π} , fits

Stefano Lottini (ALPHA Coll.)

Chiral behaviour of f_{π} in $N_f = 2$

f_{π} , absence of am_q -effects

The three curves F_{π} collapse well:

f_{π} , fit range-dependence

The $\sim \tilde{y}_1^2$ term has a 15% effect along F_{π} : not negligible

f_{π} , results

• From α_4 , the SU(2) low-energy constant

$$\overline{\ell}_4 = \frac{\alpha_4}{1 - \alpha_4 \widetilde{y}_\pi + \widetilde{y}_\pi \log \widetilde{y}_\pi} - \log \widetilde{y}_\pi = 4.4(4)(9)$$

• A continuum extrapolation of $f_{\pi}r_0$ in a^2 gives:

 $r_0^{\rm phys} = 0.485(7)(7) \, {\rm fm}$

cf. [ALPHA 2012, f_K]: $r_0^{\text{phys}} = 0.503(10)$ fm

э

Sac

< ロト < 同ト < ヨト < ヨト

f_{π} , world results [from FLAG 2013]

 F_{π}/F carries, to NLO, the same information as $\overline{\ell}_4$:

$$\frac{m_{\pi}^2}{4M_R} = \frac{\Sigma_0}{f^2} \Big\{ 1 + \alpha_3 \widetilde{y}_1 + \frac{1}{2} \widetilde{y}_1 \log \widetilde{y}_1 + \dots \Big\}$$

[Gasser & Leutwyler '80s]

• Amplitude in front rewritten to yield

$$\sqrt[3]{S_0} = rac{\sqrt[3]{\Sigma_{0,\mathrm{cont}}}}{f_{\pi,\mathrm{phys}}}$$

through an a^2 -linear continuum limit

• α_3 encodes the LEC

$$\overline{\ell}_3 = -2\alpha_3 - \log \widetilde{y}_{\pi}$$

∃ ► < ∃ >

 m_{π}^2/M_B , fits

m_{π}^2/M_R , chiral condensate

In the $\overline{\rm MS}$ scheme at scale $\mu =$ 2 GeV,

 $\Sigma_0^{1/3}\Big|_{\rm cont} = 268.1(2.6)(4.9) \; \text{MeV}$

m_{π}^2/M_R , low-energy constant $\overline{\ell}_3$

 $\bar{\ell}_3 = 2.4(1)(^{+0.7}_{-1.3})$

large systematic uncertainties

(systematic error assessment)

$f_{\mathcal{K}}/f_{\pi}$: set-up

- Trajectory in $(\kappa_1 = \kappa_{sea}, \kappa_3)$ defined by: $\frac{m_K}{f_K} = \frac{m_K}{f_K}|_{phys}$
- Chiral behaviour dictated by that of f_K and f_π
- We also allow for a (hardly necessary) a^2 -term

$$\frac{f_{\mathcal{K}}}{f_{\pi}} = R \left\{ 1 + c_1 \widetilde{y}_1 + \frac{\widetilde{y}_1}{2} \log \widetilde{y}_1 - \frac{\widetilde{y}_1}{8} \log \left(2 \frac{\widetilde{y}_{\mathcal{K}}}{\widetilde{y}_1} - 1 \right) + c_2 \widetilde{y}_1^2 \right\} \quad \text{,} \quad \widetilde{y}_{\mathcal{K}} \simeq 0.182$$

f_K/f_{π} , value at the physical point

Very stable value thanks to the ensemble at $m_{\pi} =$ 192 MeV.

$$\frac{f_{\mathcal{K}}}{f_{\pi}}\Big|_{\rm phys} = 1.187(6)(3) \quad \Rightarrow \quad |V_{us}| = 0.2263(13)$$

Unitarity check: $|V_{ud}|^2 + |V_{us}|^2 = 1.0004(13)$

using exp. values [Antonelli & al. '10; Hardy, Towner '09]

f_K/f_{π} , world results

Conclusions

- Good signal on pionic quantities
 - χ PT NNLO terms important (as opposed to those $\sim am_q$)
 - data at $m_{\pi} =$ 192 MeV crucial in stabilising
- Results compare well with most other lattice results
- Future plans:
 - Different trajectory for f_K
 - Use t₀ (gradient flow scale) for less uncertainties [M. Bruno's talk]
 - ... then move on to $N_f = 2 + 1!$

f_{π}/f	1.061(6)(16)
$\overline{\ell}_4$	4.4(4)(9)
$\Sigma_{0}^{1/3}$	268.1(2.6)(4.9) MeV
$\overline{\ell}_3$	$2.4(1)(^{+0.7}_{-1.3})$
f_K/f_{π}	1.187(6)(13)
$ V_{us} $	0.2263(12)
<i>r</i> ₀	0.485(7)(7) fm

Stefano Lottini (ALPHA Coll.)

Stefano Lottini (ALPHA Coll.)

Chiral behaviour of f_{π} in $N_f = 2$

っへで 20/19 (c f. [Schäfer, Sommer, Virotta 2010] for details)

Integrated autocorrelation time "converts naïve error into actual one":

$$\sigma^2 = \frac{2\tau_{\text{int}}^0}{N}\Gamma(0)$$
; $\tau_{\text{int}}^0 = \frac{1}{2} + \sum_{t=1}\rho(t)$ with $\rho(t) = \Gamma(t)/\Gamma(0)$

In practice, signal on ρ soon lost: danger!

(despite trying to balance uncertainty in ρ and remainder of the tail) Observable can couple, undetected, to a slow mode

⇒ underestimation of error!

Solution: where the measured ρ vanishes ($t \equiv W$), attach an exponential tail

- It represents the observable's coupling to slow modes
- Its decay rate is measured (or estimated) previously

Use rather: $\tau_{\text{int}} = \tau_{\text{int}}^{0} + \tau_{\exp}\rho(W)$

Lattice 2013, Mainz

21/19

Tag	β, \boldsymbol{a} [fm]	m_{π} [MeV]	$m_{\pi}L$	N _{cnfg.}	$\frac{N_{\text{cnfg.}}}{\tau_{\text{int}}}$	$\frac{N_{\text{cnfg.}}}{\tau_{\text{exp}}}$	N _{src}	trj.	Alg.	<i>r</i> ₀ ?
A2	5.2	629	7.7	1000	817	120.6	10	8	DD	Х
A3	(0.075)	492	6.0	1004	633	121.1	10	8	DD	X
A4		383	4.7	1012	861	122.0	10	8	DD	X
A5		330	4.0	1001	1100	163.5	10	4	MP	X
B6		281	5.2	636	639	51.9	20	2	MP	X
E4	5.3	580	6.2	156	97	9.3	10	16	DD	-
E5f	(0.065)	436	4.6	1000	354	59.9	10	16	DD	-
E5g		436	4.7	1000	571	119.8	10	16	DD	X
F6		311	5.0	600	410	35.9	10	8	DD	X
F7		266	4.3	1177	569	70.5	10	8	DD	X
G8		192	4.1	557	457	22.6	20	2	MP	X
N4	5.5	551	6.5	469	30	4.2	10	8	DD	Х
N5	(0.048)	440	5.2	476	82	4.2	10	8	DD	X
N6		340	4.0	2010	386	40.2	10	4	MP	X
07		267	4.2	980	211	19.6	20	4	MP	X

• All systems have $L_T = 2L$ and periodic b.c.

2

590

From 2-point functions to PCAC masses

Define

$$P^{rs} = \overline{\psi}_r \gamma_5 \psi_s$$
 ; $A_0^{rs} = \overline{\psi}_r \gamma_0 \gamma_5 \psi_s$:

with the 2-point functions

$$f_{PP}^{rs} = \int \langle P^{rs}(x) P^{sr}(0) \rangle$$
; $f_{AP}^{rs} = \int \langle A_0^{rs}(x) P^{sr}(0) \rangle$.

one finds

$$\frac{\frac{1}{2}(\partial_0 + \partial_0^*)f_{AP}(x_0) + c_A a \partial_0^* \partial_0 f_{PP}(x_0)}{2f_{PP}(x_0)} \to m_{rs} \ , \ x_0 \to \infty \ ,$$

renormalised then as:

$$m_{R}^{rs} = \frac{Z_{A}}{Z_{P}} \frac{(1 + \overline{b}_{A} a m_{sea} + \widetilde{b}_{A} a m_{rs})}{(1 + \overline{b}_{P} a m_{sea} + \widetilde{b}_{P} a m_{rs})} m_{rs}$$

э

Sac

ヨト・イヨト

From 2-point functions to m_{PS} and f_{PS}

$$f_{PP}(x_0) = c_1 \left[e^{-m_{PS}x_0} + (echo) \right] + higher \ states$$
$$f_{PS}^{\text{bare}} = 2\sqrt{2c_1}m_{rs}m_{PS}^{-3/2} \quad , \quad f_{PS} = Z_A(1 + \overline{b}_A am_{\text{sea}} + \widetilde{b}_A am_{rs})f_{PS}^{\text{bare}}$$

- Generate U(1) random noise source on timeslice t: $\eta_t(x)$
- Solve $\zeta_t^r = a^{-1} (D + m_{0,r})^{-1} \gamma_5 \eta_t$
- Estimator for the two-point functions:

$$\begin{aligned} a^{3} f_{PP}^{rs}(x_{0}) &= \sum_{\mathbf{x}} \left\langle \left\langle \zeta_{t}^{r}(x_{0}+t,\mathbf{x})^{\dagger} \quad \zeta_{t}^{s}(x_{0}+t,\mathbf{x}) \right\rangle \right\rangle ; \\ a^{3} f_{AP}^{rs}(x_{0}) &= \sum_{\mathbf{x}} \left\langle \left\langle \zeta_{t}^{r}(x_{0}+t,\mathbf{x})^{\dagger} \gamma_{5} \zeta_{t}^{s}(x_{0}+t,\mathbf{x}) \right\rangle \right\rangle ; \end{aligned}$$

(averages are over sources and configurations).