A $N_f = 2 + 1 + 1$ "twisted" determination of m_b and of f_{B_s} and f_{B_s}/f_B

Eleonora Picca (ETM Collaboration) In collaboration with: N.Carrasco Vela, P.Dimopoulos, R.Frezzotti, V.Giménez, V.Lubicz, G.C.Rossi, F.Sanfilippo, S.Simula and C.Tarantino

Università Roma Tre, INFN Roma Tre

Mainz, Lattice 2013

- Some details on the ETMC simulations for $N_f = 2 + 1 + 1$ with the smearing technique
- Description of the analysis performed: *w* optimal method and ratio method
- Preliminary results for m_b , f_{B_s} and f_{B_s}/f_B

- UV cut off: numerical simulations with relativistic quarks only feasible for heavy quarks lighter than the $b \rightarrow$ extrapolation from the charm region to the *b* quark mass region
- The signal/noise ratio prevents us from extracting the mass from two point correlation functions → smearing technique and w optimal method

ETMC ensambles with $N_f = 2 + 1 + 1$

- Simulation with $N_f = 2 + 1 + 1$ at three values of the lattice spacings
- $m_s/8 < \mu_I < m_s/2$ (210 MeV $< M_{\pi} <$ 440 MeV) \rightarrow chiral extrapolation to the physical light quark mass is needed!
- $m_c < \mu_h < 3m_c$
- Two point correlation functions with smearing sources

β	1/a (GeV)	$Z_P(\overline{MS}, 2 \text{ GeV})$	V/a^4	$a\mu_{sea}$	N _{conf}	$a\mu_s$	$a\mu_h$
1.90	2.224(68)	0.5210(18)	$32^3 \times 64$	0.0030	150	0.01800	0.25000
				0.0040	90	0.02200	0.77836
				0.0050	150	0.02600	
			$24^3 \times 48$	0.0060	150		
				0.0080	150		
				0.0100	150		
1.95	2.416(63)	0.5060(11)	$32^{3} \times 64$	0.0025	150	0.01550	0.22000
				0.0035	150	0.01900	0.68495
				0.0055	150	0.02250	
				0.0075	75		
			$24^{3} \times 48$	0.0085	150		
2.10	3.182(59)	0.5130(08)	$48^{3} \times 96$	0.0015	60	0.01230, 0.01500	0.17000
				0.0030	90	0.01770	0.52928

Lattice Action

- Gauge field: Iwasaki action
- Sea quark action: Twisted mass action at maximal twist
 - u/d quarks: mass degenerate light doublet
 - s/c quarks: non degenerate mass doublet
- Valence quark action: Osterwalder-Seiler at maximal twist

Smearing technique

Using of smeared sources \rightarrow reduced coupling of the operators to the excited states

- Gaussian smearing for the fermion fields
- APE smearing for the gauge field

$$C_{SL} \equiv \langle \mathcal{O}_S \mathcal{O}_L \rangle \qquad \qquad C_{SS} \equiv \langle \mathcal{O}_S \mathcal{O}_S \rangle$$

Plateau at earlier time?

Meson masses: w optimal method

Construction of a new operator in order to maximize the coupling to the ground state (safe plateau at earlier time)

$$egin{aligned} \mathcal{O}_w &\sim w \mathcal{O}_L + (1-w) \mathcal{O}_s \ &\langle 0 | \, \mathcal{O}_w \mathcal{O}_s \, | 0
angle &= \mathcal{C}_w(t) \sim w \, \, \mathcal{C}_{SL} + (1-w) \mathcal{C}_{SS} \end{aligned}$$

m_b and decay constants calculation: ratio method¹

An extrapolation from the charm region to the b quark mass is needed

Construct HQET-inspired ratios of the observables of interest at successive values of the heavy quark mass

• The heavy quark mass are choosen to have fixed ratio

 $\mu_h = \lambda \cdot \mu_{h-1}.$

The first mass μ_1 , triggering mass, is chosen in the charm region

- Ratios have small discretization effects
- Known static limit $(\mu_h \to \infty)$: better interpolation from the charm-region to m_b

¹See talk by P. Dimopoulos on Tuesday for $N_f = 2$

b quark mass calculation

$$\lim_{\mu_{h}^{pole} \to \infty} \left(\frac{M_{hl}}{\mu_{h}^{pole}} \right) = const \quad (HQET) \qquad \qquad \mu_{h}^{pole} = \rho(\mu^{*}, \mu_{h}) \cdot \mu_{h}$$
(N³LO)

Define

$$y(\mu_{h};\mu_{l};a) = \frac{M_{h,l}}{M_{h-1,l}} \frac{\mu_{h-1}^{pole}}{\mu_{h}^{pole}} = \lambda^{-1} \frac{M_{h,l}}{M_{h-1,l}} \frac{\rho(\mu^{*},\mu_{h-1})}{\rho(\mu^{*},\mu_{h})}, \quad \frac{\mu_{h}}{\mu_{h-1}} = \lambda$$
$$\lim_{\mu_{h}^{pole} \to \infty} y(\mu_{h};\mu_{u,d};a=0) = 1$$

• Find m_b from a chain of ratios: $m_b = \mu_1 \cdot \lambda^{K_b}$

$$y(\mu_2) \cdot y(\mu_3) \cdot \ldots \cdot y(\mu_{K_b+1}) = \lambda^{K_b} \frac{M_{K_b+1,u/d}}{M_{1,u/d}} \left[\frac{\rho(\mu^*, \mu_1)}{\rho(\mu^*, \mu_{K_b+1})} \right]$$

fixing $M_{K_b+1,u/d} \equiv M_B^{exp} = 5.279$ GeV so that K_b is an integer.

Triggering point meson mass: discretization effect $\sim 3\%$.

Fit of ratios discretization errors $\sim 0.3-0.8\%$

• Choose λ in such a way that K_b is an integer:

 $m_{tr} = 1.14 \text{ GeV}, \ \lambda = 1.1644, \ K_b = 10$

$$m_b(\overline{MS}, m_b)_{N_f=4} = 4.29(8)(9)(6) \text{ GeV} = 4.29(13) \text{ GeV}$$

- First error is statistical error (fit error, lattice spacing and renormalization constants statistical error)
- The other contributions are respectively from the lattice spacing $(\sim 2\%)$ and renormalization constants $(\sim 1.5\%)$ systematic uncertainties
- Changing the triggering mass gives a perfectly compatible result

A more detailed investigation of systematic uncertainties is in progress

Pseudoscalar decay constants

No *w* optimal method (in progress): safe plateu only for smallest heavy valence quark (in this case $m_c < \mu_h < 1.7m_c$)

f_{B_s} and f_{B_s}/f_B calculation

$$\lim_{\mu_h^{pole} \to \infty} f_{hl(s)} \sqrt{\mu_h^{pole}} = const \quad (HQET)$$

Construct ratios with known static limit

$$z_{s(l)}(\mu_{h}) = \lambda^{1/2} \frac{f_{h,s(l)}}{f_{h-1,s(l)}} \cdot \frac{C_{A}(\mu^{*}, \mu_{h-1})}{C_{A}(\mu^{*}, \mu_{h})} \sqrt{\frac{\rho(\mu^{*}, \mu_{h})}{\rho(\mu^{*}, \mu_{h-1})}}$$

$$C_{A}(\mu^{*}, \mu_{h}) \quad (NLO); \qquad \rho(\mu^{*}, \mu_{h}) \quad (N^{3}LO)$$
calculation: For $f_{B_{*}}/f_{B}$ calculation:

For f_{B_c} calculation:

$$\lim_{\mu_h^{pole}
ightarrow\infty}z_s(\mu_h;\mu_{u/d};a=0)=1$$

 $\lim_{\substack{\mu_h^{pole} \to \infty}} \frac{z_s(\mu_h; \mu_{u/d}; a = 0)}{z_l(\mu_h; \mu_{u/d}; a = 0)} = 1$

Eleo

 f_{B_s} is determined using a chain of ratios. λ and K_b are obtained in the previous analysis

$$z_{s}(\mu_{2}) \cdot \ldots \cdot z_{s}(\mu_{K_{b}+1}) = \lambda^{K_{b}/2} \frac{f_{K_{b}+1,s}}{f_{1,s}} \frac{C_{A}(\mu^{*}, \mu_{1})}{C_{A}(\mu^{*}, \mu_{K_{b}+1})} \sqrt{\frac{\rho(\mu^{*}, \mu_{K_{b}+1})}{\rho(\mu^{*}, \mu_{1})}}{\frac{\rho(\mu^{*}, \mu_{K_{b}+1})}{\rho(\mu^{*}, \mu_{1})}}$$

- Statistical + lattice spacing systematics
- Less heavy quark masses than for the *b* quark mass calculation: *w* optimal method and better estimate of the systematical uncertainties in progress

f_{B_s}/f_B

- Using the double ratios z_s/z_l : constant fit
- f_{B_s}/f_B at triggering point: Linear + log (HMChPT) dependance on μ_l (counted in the systematics).

Using $(f_{hs}/f_{hl})/(f_{ls}/f_{ll})$ the systematical error is strongly reduced (from $\sim 2\%$ to 0.5%).

 $\chi^{2}_{lin}/dof = 1.19; \quad \chi^{2}_{HMChPT}/dof = 1.36$

$$\chi^2/dof \sim 0.6$$

$$\chi^2/dof \sim 0.6$$

$$(preliminary)$$

$$f_{B_s}/f_B = 1.201(21)(6) \rightarrow f_K/f_\pi$$

$$\sim 0.4\%) + systematic from linear vs HMChPT fit$$

$$f_K/f_\pi = 1.193(5) [by FLAG]$$

$$f_{D_s}/f_B = 1.001(21)(5) [by FLAG]$$

$$f_{D_s}/f_{T_s} = 1.103(5) [by FLAG]$$

$$f_{D_s}/f_{T_s} = 1.001(21)(5) [by FLAG]$$

$$f_{D_s}/f_{T_s} = 1.103(5) [by FLAG]$$

Eleonora Picca (Univ. Roma Tre - INFN) m_b , f_{B_S} and f_{B_S}/f_B with $N_f = 2 + 1 + 1$

Lattice 2013 17 / 19

Summary and Conclusions

- ETMC simulations with $N_f = 2 + 1 + 1$ with smearing sources
- Application of the w optimal method for the meson masses
- Use of ratio method in order to reduce statistical errors

	Preliminary $N_f = 2 + 1 + 1$	$N_f = 2^{[2]}$
$m_b(\overline{MS}, m_b)$	4.29(13) GeV	4.29(12) GeV
f_{B_s}	235(9) MeV	228(8) MeV
f_{B_s}/f_B	1.201(22)	1.206(24)
f _B	196(8) MeV	189(8) MeV

Future plans:

- Use of the w optimal method for the decay constants
- Better estimate of the systematic uncertainties

²Presented by P.Dimopoulos on Tuesday

Thanks for the attention!

Some other details on the simulations

β	L(fm)	$M_{\pi}({ m MeV})$	$M_{\pi}L$
1.90	2.84	245.41	3.53
		282.13	4.06
		314.43	4.53
1.90	2.13	282.13	3.05
		343.68	3.71
		396.04	4.27
		442.99	4.78
1.95	2.61	238.67	3.16
		280.95	3.72
		350.12	4.64
		408.13	5.41
1.95	1.96	434.63	4.32
2.10	2.97	211.18	3.19
		242.80	3.66
		295.55	4.46

Smearing technique

Gaussian smearing

$$\mathcal{O}_{\mathcal{S}}(t,\vec{x}) = \left[\frac{1}{1+6\alpha_{\mathcal{S}}} \left(\delta_{\vec{x},\vec{x}'} + \alpha_{\mathcal{S}}H_{\vec{x},\vec{x}'}[U']\right)^{N_{\mathcal{S}}}\right]\mathcal{O}_{L}(t,\vec{x}')$$

$$\begin{split} N_s \text{ is the number of iterations and } \alpha_S \text{ is the coupling between nearby} \\ \text{lattice sites} \\ H_{\vec{x},\vec{x}'}[U] = \sum_{\mu=1}^3 \left[U_{\vec{x},\vec{x}+\mu} \cdot \delta_{\vec{x}',\vec{x}+\mu} + U_{\vec{x}-\mu,\vec{x}}^{\dagger} \cdot \delta_{\vec{x}',\vec{x}-\mu} \right] \end{split}$$

APE smearing

$$U'_{x,x+\mu} \equiv U^{(N_G)}_{x,x+\mu} = P_{SU(3)} \left\{ U^{(N_G-1)}_{x,x+\mu} + \frac{\alpha_{APE}}{6} \sum_{\nu=\pm 1,\pm 2,\pm 3}^{\nu\neq\pm\mu} U^{(N_G-1)}_{x,x+\nu} U^{(N_G-1)}_{x+\nu,x+\nu+\mu} U^{(N_G-1)}_{x+\nu+\mu,x+\mu} \right\}$$

w optimal method: details

$$C_w(t) = w \cdot rac{C_{SL}(t)}{C_{SL}(1)} + (1-w) \cdot rac{C_{SS}(t)}{C_{SS}(1)}$$

β	t _{norm} /a	$L^3 \times T$	Time intervals (t/a)	$\left[\frac{t_{min}}{a}, \frac{t_{max}}{a}\right]_W$	$\left[\frac{t_{min}}{a}, \frac{t_{max}}{a}\right]$
1.90	5	$24^{3} \times 48$	[7,10] [8, 11] [9,12] [10, 13] [11, 14]	[9,18]	[11,22]
		$32^{3} \times 64$		[9,20]	[11,28]
1.95	6	$24^{3} \times 48$	[9, 12] [10, 13] [11,14] [12,15] [13,16]	[10,18]	[12,22]
		$32^3 \times 64$		[10,20]	[12,28]
2.10	8	$48^{3} \times 96$	[12, 16] [13, 17] [14, 18] [15, 19] [16, 20]	[13,30]	[16,40]

m_b without w optimal method

Discretization effects:

- mass at triggering point \sim 3%
- ratios 0.2% 0.8% (using *w* optimal method errors are smaller especially for heavier quark masses)

$$m_b(\overline{MS}, m_b) = 4.31(9)(9)(6) \text{ GeV} = 4.31(14) \text{ GeV}$$

(w optimal method : $m_b(\overline{MS}, m_b) = 4.29(13) \text{ GeV}$)

Changing the triggering mass

Practically the same result

HMChPT for decay constant ratio

³D. Becirevic, S. Fajfer, S. Prelovsek, J. Zupan, [hep-ph/0211271]

Eleonora Picca (Univ. Roma Tre - INFN) m_b , f_{B_S} and f_{B_S}/f_B with $N_f = 2 + 1 + 1$

Lattice 2013 27 / 19

Confrontation with/without f_K/f_{π}

	Using f_K/f_{π}	Not using $f_{\mathcal{K}}/f_{\pi}$
f_{B_s}/f_B	1.201(21)(6)=1.201(22)	1.207(21)(28)=1.207(35)
f _B	196(8)(4)(/) MeV=196(8) MeV	195(7)(4)(5) MeV= 195(9)MeV

	Quadratic	Linear
f_{B_s}/f_B	1.201(21)(6)=1.201(22)	1.206(14)(6)=1.206(15)
f _B	196(8)(4) MeV=196(8) MeV	195(6)(4) MeV= 195(7)MeV