

Topological susceptibility from twisted mass fermions using spectral projectors

Krzysztof Cichy NIC, DESY Zeuthen, Germany Adam Mickiewicz University, Poznań, Poland

> in collaboration with: Elena García Ramos Karl Jansen

JULY 29 - AUGUST 03 2013 MAINZ, GERMANY

Krzysztof Cichy

LATTICE 2013 - 1 / 27

Introduction Topological susceptibility

Presentation outline Spectral projectors Topological charge and susceptibility Simulation setup Ensembles

Results - $N_f = 2$ and $N_f = 2 + 1 + 1$

```
Results – quenched
Summary
```

 the topological susceptibility expresses fluctuations of the topological charge

- as such, it describes non-trivial topological properties of the underlying quantum vacuum
- such properties have far-reaching phenomenological implications
- the most prominent example: flavour-singlet pseudoscalar η' meson \rightarrow Witten-Veneziano relation

Definition and computation on the lattice:

- notoriously difficult
- long debate in the literature about the validity of different approaches
- clean definition: index of overlap Dirac operator \rightarrow very costly
- another clean definition: from density chain correlators
 [L. Giusti, G.C. Rossi, M. Testa 2004], [M. Lüscher 2004] using spectral projectors → subject of this talk
 [L. Giusti, M. Lüscher 2008], [M. Lüscher, F. Palombi 2010]

Introduction Topological susceptibility Presentation outline Spectral projectors Topological charge and susceptibility Simulation setup Ensembles

Results – $N_f = 2$ and $N_f = 2 + 1 + 1$

Results – quenched

Summary

- 1. Theoretical introduction:
 - spectral projectors, topological susceptibility, Z_P/Z_S
- 2. Simulation setup
- 3. Results for $N_f = 2$ and $N_f = 2 + 1 + 1$
 - chiral fits of topological susceptibility chiral condensate
- 4. Results in the quenched case $(N_f = 0)$
 - Witten-Veneziano formula
- 5. Summary

Spectral projectors

- Introduced in: [L. Giusti, M. Lüscher 2008]
- First application for the computation of the topological susceptibility: (quenched case) [M. Lüscher, F. Palombi 2010]
- \mathbb{P}_M spectral projector \rightarrow [talk by E. García Ramos]
- Tr \mathbb{P}_M can be represented stochastically by: Tr $\mathbb{P}_M = \frac{1}{N} \sum_{j=1}^N (\eta_j, \mathbb{P}_M \eta_j)$, where η_1, \ldots, η_N are pseudo-fermion fields added to the theory.
- One can also evaluate other traces of this kind, e.g. $\operatorname{Tr} \gamma_5 \mathbb{P}_M$.
- In practice, one constructs an approximation to the projector \mathbb{P}_M we denote it by \mathbb{R}_M .

• For Ginsparg-Wilson fermions:

 $\operatorname{Tr}\left\{\gamma_5 \mathbb{P}_M\right\} = Q_{top}$

• The topological susceptibility is in general given by:

- Hence: $\chi = \frac{Z_S^2}{Z_P^2} \frac{\langle \operatorname{Tr}\{\gamma_5 \mathbb{R}_M^2\} \operatorname{Tr}\{\gamma_5 \mathbb{R}_M^2\} \rangle}{V}.$
- The renormalization constants ratio Z_P/Z_S and the absence of short-distance singularities in this definition can be inferred from density chain correlators.

Krzysztof Cichy

Introduction

Topological susceptibility

Ensembles

Summary

Presentation outline Spectral projectors Topological charge

and susceptibility Simulation setup

Results – $N_f = 2$ and $N_f = 2 + 1 + 1$

Results – quenched

 χ

Computation of topological susceptibility

Introduce the following observables: [M. Lüscher, F. Palombi 2010] $\mathcal{A} = \frac{1}{N} \sum_{k=1}^{N} \left(\mathbb{R}_{M}^{2} \eta_{k}, \mathbb{R}_{M}^{2} \eta_{k} \right),$ $\mathcal{B} = \frac{1}{N} \sum_{k=1}^{N} \left(\mathbb{R}_{M} \gamma_{5} \mathbb{R}_{M} \eta_{k}, \mathbb{R}_{M} \gamma_{5} \mathbb{R}_{M} \eta_{k} \right),$ $\mathcal{C} = \frac{1}{N} \sum_{k=1}^{N} \left(\mathbb{R}_{M} \eta_{k}, \gamma_{5} \mathbb{R}_{M} \eta_{k} \right),$ Topological susceptibility:

pological susceptibility:

$$= \frac{Z_S^2}{Z_P^2} \frac{\langle \mathcal{C}^2 \rangle - \frac{\langle \mathcal{B} \rangle}{N}}{V} \quad \leftrightarrow \quad \chi = \frac{\langle Q_{top}^2 \rangle}{V} \quad \frac{Z_S^2}{Z_P^2} = \frac{\langle \mathcal{A} \rangle}{\langle \mathcal{B} \rangle}$$

 \mathcal{C} – estimator of topological charge

Expect: • $\langle C \rangle = 0$ for long enough MC history

- ${\mathcal C}$ Gaussian distributed, distribution width $ightarrow \chi$
- \mathcal{C} a sensitive measure of autocorrelations
- \rightarrow freezing of topological charge for increasing β

Krzysztof Cichy

LATTICE 2013 - 6 / 27

Simulation setup

- We use dynamical twisted mass configurations generated by ETMC
 - * $N_f = 2$ [P. Boucaud et al., 2007, 2008], [R. Baron et al., 2009],
 - * $N_f = 2 + 1 + 1$ [R. Baron et al., 2010, 2011].
- We also generated $N_f = 0$ configurations.
- Gauge action: $S_G[U] = \frac{\beta}{3} \sum_x \left(b_0 \sum_{\mu,\nu=1} \operatorname{Re} \operatorname{Tr} \left(1 P_{x;\mu,\nu}^{1 \times 1} \right) + b_1 \sum_{\mu \neq \nu} \operatorname{Re} \operatorname{Tr} \left(1 P_{x;\mu,\nu}^{1 \times 2} \right) \right),$

 $N_f = 2$ - tree-level Symanzik improved action [P. Weisz, 1982], i.e. $b_1 = -\frac{1}{12}$. $N_f = 2 + 1 + 1$ and $N_f = 0$ - Iwasaki action [Y. Iwasaki, 1985], i.e. $b_1 = -0.331$, $b_0 = 1 - 8b_1$,

 Wilson twisted mass fermion action for the light sector [R. Frezzotti, P.A. Grassi, G.C. Rossi, S. Sint, P. Weisz, 2000-2004]

$$S_{l}[\psi, \bar{\psi}, U] = a^{4} \sum_{x} \bar{\chi}_{l}(x) \left(D_{W} + m_{0,l} + i\mu_{l}\gamma_{5}\tau_{3} \right) \chi_{l}(x),$$

 $\chi_l = (\chi_u, \chi_d)$, $m_{0,l}$ and μ_l are the bare untwisted and twisted light quark masses.

• Twisted mass action for the heavy doublet [R. Frezzotti, G.C. Rossi, 2003, 2004]

$$S_{h}[\psi,\bar{\psi},U] = a^{4} \sum_{x} \bar{\chi}_{h}(x) \big(D_{W} + m_{0,h} + i\mu_{\sigma}\gamma_{5}\tau_{1} + \mu_{\delta}\tau_{3} \big) \chi_{h}(x),$$

 $\chi_h = (\chi_c, \chi_s), m_{0,h}$ – bare untwisted heavy quark mass, μ_σ – bare twisted mass with the twist along the τ_1 direction, μ_δ – mass splitting along the τ_3 direction that makes the strange and charm quark masses non-degenerate.

Renormalized strange and charm quark masses $m_R^{s,c} = Z_P^{-1} (\mu_\sigma \mp (Z_P/Z_S)\mu_\delta)$.

Krzysztof Cichy

LATTICE 2013 – 7 / 27

Ensembles used

Ensemble	eta	lattice	$a\mu_l$	$\mu_{l,R}$ [MeV]	κ_c	L [fm]	$m_{\pi}L$	a]fm]	Z_P/Z_S	r_0/a
A30.32	1.90	$32^3 \times 64$	0.0030	13	0.163272	2.8	4.0	0.0863	0.699(13)	5.231(38)
A40.20	1.90	$20^3 \times 40$	0.0040	17	0.163270	1.7	3.0	0.0863	0.699(13)	5.231(38)
A40.24	1.90	$24^3 \times 48$	0.0040	17	0.163270	2.1	3.5	0.0863	0.699(13)	5.231(38)
A40.32	1.90	$32^3 \times 64$	0.0040	17	0.163270	2.8	4.5	0.0863	0.699(13)	5.231(38)
A50.32	1.90	$32^3 \times 64$	0.0050	22	0.163267	2.8	5.1	0.0863	0.699(13)	5.231(38)
A60.24	1.90	$24^3 \times 48$	0.0060	26	0.163265	2.1	4.2	0.0863	0.699(13)	5.231(38)
A80.24	1.90	$24^3 \times 48$	0.0080	35	0.163260	2.1	4.8	0.0863	0.699(13)	5.231(38)
B25.32	1.95	$32^3 \times 64$	0.0025	13	0.161240	2.5	3.4	0.0779	0.697(7)	5.710(41)
B35.32	1.95	$32^3 \times 64$	0.0035	18	0.161240	2.5	4.0	0.0779	0.697(7)	5.710(41)
B55.32	1.95	$32^3 \times 64$	0.0055	28	0.161236	2.5	5.0	0.0779	0.697(7)	5.710(41)
B75.32	1.95	$32^3 \times 64$	0.0075	38	0.161232	2.5	5.8	0.0779	0.697(7)	5.710(41)
B85.24	1.95	$24^3 \times 48$	0.0085	45	0.161231	1.9	4.7	0.0779	0.697(7)	5.710(41)
D20.48	2.10	$48^3 \times 96$	0.0020	12	0.156357	2.9	3.9	0.0607	0.740(5)	7.538(58)
D30.48	2.10	$48^3 \times 96$	0.0030	19	0.156355	2.9	4.7	0.0607	0.740(5)	7.538(58)
D45.32	2.10	$32^3 \times 64$	0.0045	29	0.156315	1.9	3.9	0.0607	0.740(5)	7.538(58)
b 40.16	3.90	$16^3 \times 32$	0.004	21	0.160856	1.4	2.5	0.085	0.6390(32)	5.35(4)
b40.20	3.90	$20^3 \times 40$	0.004	21	0.160856	1.7	2.8	0.085	0.6390(32)	5.35(4)
b40.24	3.90	$24^3 \times 48$	0.004	21	0.160856	2.0	3.3	0.085	0.6390(32)	5.35(4)
b40.32	3.90	$32^3 \times 64$	0.004	21	0.160856	2.7	4.3	0.085	0.6390(32)	5.35(4)
b64.24	3.90	$24^3 \times 48$	0.0064	34	0.160856	2.0	4.1	0.085	0.6390(32)	5.35(4)
b85.24	3.90	$24^3 \times 48$	0.0085	45	0.160856	2.0	4.7	0.085	0.6390(32)	5.35(4)
c30.20	4.05	$20^3 \times 40$	0.003	19	0.157010	1.3	2.4	0.067	0.6820(23)	6.71(4)
d20.24	4.20	$24^3 \times 48$	0.002	15	0.154073	1.3	2.4	0.054	0.7130(29)	8.36(6)
e17.32	4.35	$32^3 \times 64$	0.00175	16	0.151740	1.3	2.4	0.042	0.7398(33)	5.35(4)
Z_P/Z_S from	[C. Ale	xandrou et al	., 2012], [K	. Cichy, K	. Jansen, P.	Korcyl,	2012], [D	. Palao, p	rivate commun	ication]

Ensembles used – FVE

Ensemble	eta	lattice	$a\mu_l$	$\mu_{l,R}$ [MeV]	κ_c	L [fm]	$m_{\pi}L$	a]fm]	Z_P/Z_S	r_0/a
A30.32	1.90	$32^3 \times 64$	0.0030	13	0.163272	2.8	4.0	0.0863	0.699(13)	5.231(38)
A40.20	1.90	$20^3 \times 40$	0.0040	17	0.163270	1.7	3.0	0.0863	0.699(13)	5.231(38)
A40.24	1.90	$24^3 \times 48$	0.0040	17	0.163270	2.1	3.5	0.0863	0.699(13)	5.231(38)
A40.32	1.90	$32^3 \times 64$	0.0040	17	0.163270	2.8	4.5	0.0863	0.699(13)	5.231(38)
A50.32	1.90	$32^3 \times 64$	0.0050	22	0.163267	2.8	5.1	0.0863	0.699(13)	5.231(38)
A60.24	1.90	$24^3 \times 48$	0.0060	26	0.163265	2.1	4.2	0.0863	0.699(13)	5.231(38)
A80.24	1.90	$24^3 \times 48$	0.0080	35	0.163260	2.1	4.8	0.0863	0.699(13)	5.231(38)
B25.32	1.95	$32^3 \times 64$	0.0025	13	0.161240	2.5	3.4	0.0779	0.697(7)	5.710(41)
B35.32	1.95	$32^3 \times 64$	0.0035	18	0.161240	2.5	4.0	0.0779	0.697(7)	5.710(41)
B55.32	1.95	$32^3 \times 64$	0.0055	28	0.161236	2.5	5.0	0.0779	0.697(7)	5.710(41)
B75.32	1.95	$32^3 \times 64$	0.0075	38	0.161232	2.5	5.8	0.0779	0.697(7)	5.710(41)
B85.24	1.95	$24^3 \times 48$	0.0085	45	0.161231	1.9	4.7	0.0779	0.697(7)	5.710(41)
D20.48	2.10	$48^3 \times 96$	0.0020	12	0.156357	2.9	3.9	0.0607	0.740(5)	7.538(58)
D30.48	2.10	$48^3 \times 96$	0.0030	19	0.156355	2.9	4.7	0.0607	0.740(5)	7.538(58)
D45.32	2.10	$32^3 \times 64$	0.0045	29	0.156315	1.9	3.9	0.0607	0.740(5)	7.538(58)
b40.16	3.90	$16^3 \times 32$	0.004	21	0.160856	1.4	2.5	0.085	0.6390(32)	5.35(4)
b40.20	3.90	$20^3 \times 40$	0.004	21	0.160856	1.7	2.8	0.085	0.6390(32)	5.35(4)
b40.24	3.90	$24^3 \times 48$	0.004	21	0.160856	2.0	3.3	0.085	0.6390(32)	5.35(4)
b40.32	3.90	$32^3 \times 64$	0.004	21	0.160856	2.7	4.3	0.085	0.6390(32)	5.35(4)
b64.24	3.90	$24^3 \times 48$	0.0064	34	0.160856	2.0	4.1	0.085	0.6390(32)	5.35(4)
b85.24	3.90	$24^3 \times 48$	0.0085	45	0.160856	2.0	4.7	0.085	0.6390(32)	5.35(4)
c30.20	4.05	$20^3 \times 40$	0.003	19	0.157010	1.3	2.4	0.067	0.6820(23)	6.71(4)
d20.24	4.20	$24^3 \times 48$	0.002	15	0.154073	1.3	2.4	0.054	0.7130(29)	8.36(6)
e17.32	4.35	$32^3 \times 64$	0.00175	16	0.151740	1.3	2.4	0.042	0 7398(33)	5.35(4)
Z_P/Z_S from	[C. Ale	xandrou et al	., 2012], [K	. Cichy, K	. Jansen, P.	Korcyl,	2012], [D). Palao, p	private commun	ication]

LATTICE 2013 – 9 / 27

Ensembles used – mass dependence e.g.

Ensemble	eta	lattice	$a\mu_l$	$\mu_{l,R}$ [MeV]	κ_c	L [fm]	$m_{\pi}L$	a]fm]	Z_P/Z_S	r_0/a
A30.32	1.90	$32^3 \times 64$	0.0030	13	0.163272	2.8	4.0	0.0863	0.699(13)	5.231(38)
A40.20	1.90	$20^3 \times 40$	0.0040	17	0.163270	1.7	3.0	0.0863	0.699(13)	5.231(38)
A40.24	1.90	$24^3 \times 48$	0.0040	17	0.163270	2.1	3.5	0.0863	0.699(13)	5.231(38)
A40.32	1.90	$32^3 \times 64$	0.0040	17	0.163270	2.8	4.5	0.0863	0.699(13)	5.231(38)
A50.32	1.90	$32^3 \times 64$	0.0050	22	0.163267	2.8	5.1	0.0863	0.699(13)	5.231(38)
A60.24	1.90	$24^3 \times 48$	0.0060	26	0.163265	2.1	4.2	0.0863	0.699(13)	5.231(38)
A80.24	1.90	$24^3 \times 48$	0.0080	35	0.163260	2.1	4.8	0.0863	0.699(13)	5.231(38)
B25.32	1.95	$32^3 \times 64$	0.0025	13	0.161240	2.5	3.4	0.0779	0.697(7)	5.710(41)
B35.32	1.95	$32^3 \times 64$	0.0035	18	0.161240	2.5	4.0	0.0779	0.697(7)	5.710(41)
B55.32	1.95	$32^3 \times 64$	0.0055	28	0.161236	2.5	5.0	0.0779	0.697(7)	5.710(41)
B75.32	1.95	$32^3 \times 64$	0.0075	38	0.161232	2.5	5.8	0.0779	0.697(7)	5.710(41)
B85.24	1.95	$24^3 \times 48$	0.0085	45	0.161231	1.9	4.7	0.0779	0.697(7)	5.710(41)
D20.48	2.10	$48^3 \times 96$	0.0020	12	0.156357	2.9	3.9	0.0607	0.740(5)	7.538(58)
D30.48	2.10	$48^3 \times 96$	0.0030	19	0.156355	2.9	4.7	0.0607	0.740(5)	7.538(58)
D45.32	2.10	$32^3 \times 64$	0.0045	29	0.156315	1.9	3.9	0.0607	0.740(5)	7.538(58)
b 40.16	3.90	$16^3 \times 32$	0.004	21	0.160856	1.4	2.5	0.085	0.6390(32)	5.35(4)
b40.20	3.90	$20^3 \times 40$	0.004	21	0.160856	1.7	2.8	0.085	0.6390(32)	5.35(4)
b40.24	3.90	$24^3 \times 48$	0.004	21	0.160856	2.0	3.3	0.085	0.6390(32)	5.35(4)
b40.32	3.90	$32^3 \times 64$	0.004	21	0.160856	2.7	4.3	0.085	0.6390(32)	5.35(4)
b64.24	3.90	$24^3 \times 48$	0.0064	34	0.160856	2.0	4.1	0.085	0.6390(32)	5.35(4)
b85.24	3.90	$24^3 \times 48$	0.0085	45	0.160856	2.0	4.7	0.085	0.6390(32)	5.35(4)
c30.20	4.05	$20^3 \times 40$	0.003	19	0.157010	1.3	2.4	0.067	0.6820(23)	6.71(4)
d20.24	4.20	$24^3 \times 48$	0.002	15	0.154073	1.3	2.4	0.054	0.7130(29)	8.36(6)
e17.32	4.35	$32^3 \times 64$	0.00175	16	0.151740	1.3	2.4	0.042	0.7398(33)	5.35(4)
Z_P/Z_S from	[C. Ale	xa <mark>ndr</mark> ou et al	., 2012], [K	. Cichy, K	. Jansen, P.	Korcyl,	2012], [C). Palao, p	rivate commun	ication]

Krzysztof Cichy

LATTICE 2013 - 10 / 27

Ensembles used – lattice spacings

Ensemble	eta	lattice	$a\mu_l$	$\mu_{l,R}$ [MeV]	κ_c	L [fm]	$m_{\pi}L$	a]fm]	Z_P/Z_S	r_0/a
A30.32	1.90	$32^3 \times 64$	0.0030	13	0.163272	2.8	4.0	0.0863	0.699(13)	5.231(38)
A40.20	1.90	$20^3 \times 40$	0.0040	17	0.163270	1.7	3.0	0.0863	0.699(13)	5.231(38)
A40.24	1.90	$24^3 \times 48$	0.0040	17	0.163270	2.1	3.5	0.0863	0.699(13)	5.231(38)
A40.32	1.90	$32^3 \times 64$	0.0040	17	0.163270	2.8	4.5	0.0863	0.699(13)	5.231(38)
A50.32	1.90	$32^3 \times 64$	0.0050	22	0.163267	2.8	5.1	0.0863	0.699(13)	5.231(38)
A60.24	1.90	$24^3 \times 48$	0.0060	26	0.163265	2.1	4.2	0.0863	0.699(13)	5.231(38)
A80.24	1.90	$24^3 \times 48$	0.0080	35	0.163260	2.1	4.8	0.0863	0.699(13)	5.231(38)
B25.32	1.95	$32^3 \times 64$	0.0025	13	0.161240	2.5	3.4	0.0779	0.697(7)	5.710(41)
B35.32	1.95	$32^3 \times 64$	0.0035	18	0.161240	2.5	4.0	0.0779	0.697(7)	5.710(41)
B55.32	1.95	$32^3 \times 64$	0.0055	28	0.161236	2.5	5.0	0.0779	0.697(7)	5.710(41)
B75.32	1.95	$32^3 \times 64$	0.0075	38	0.161232	2.5	5.8	0.0779	0.697(7)	5.710(41)
B85.24	1.95	$24^3 \times 48$	0.0085	45	0.161231	1.9	4.7	0.0779	0.697(7)	5.710(41)
D20.48	2.10	$48^3 \times 96$	0.0020	12	0.156357	2.9	3.9	0.0607	0.740(5)	7.538(58)
D30.48	2.10	$48^3 \times 96$	0.0030	19	0.156355	2.9	4.7	0.0607	0.740(5)	7.538(58)
D45.32	2.10	$32^3 \times 64$	0.0045	29	0.156315	1.9	3.9	0.0607	0.740(5)	7.538(58)
b 40.16	3.90	$16^3 \times 32$	0.004	21	0.160856	1.4	2.5	0.085	0.6390(32)	5.35(4)
b40.20	3.90	$20^3 \times 40$	0.004	21	0.160856	1.7	2.8	0.085	0.6390(32)	5.35(4)
b40.24	3.90	$24^3 \times 48$	0.004	21	0.160856	2.0	3.3	0.085	0.6390(32)	5.35(4)
b40.32	3.90	$32^3 \times 64$	0.004	21	0.160856	2.7	4.3	0.085	0.6390(32)	5.35(4)
b64.24	3.90	$24^3 \times 48$	0.0064	34	0.160856	2.0	4.1	0.085	0.6390(32)	5.35(4)
b85.24	3.90	$24^3 \times 48$	0.0085	45	0.160856	2.0	4.7	0.085	0.6390(32)	5.35(4)
c 30.20	4.05	$20^{3} \times 40$	0.003	19	0.157010	1.3	2.4	0.067	0.6820(23)	6.71(4)
d20.24	4.20	$24^3 \times 48$	0.002	15	0.154073	1.3	2.4	0.054	0.7130(29)	8.36(6)
e17.32	4.35	$32^3 \times 64$	0.00175	16	0.151740	1.3	2.4	0.042	0.7398(33)	5.35(4)
Z_P/Z_S from	[C. Ale	xandrou et al	., 2012], [K	. Cichy, K	K. Jansen, P.	Korcyl,	2012], [D	. Palao, r	private commun	ication]

Krzysztof Cichy

LATTICE 2013 - 11 / 27

Introduction

 $\begin{array}{l} {\rm Results} - N_f \, = \, 2 \\ {\rm and} \, \, N_f \, = \, 2 + \, 1 + \, 1 \end{array}$

Examples

Quark mass dependence $N_f = 2$, $\beta = 3.9$

All data for $N_f = 2 + 1 + 1$

Fit using all data Fit excluding pion masses >400 MeV

Results — quenched

Summary

Results – $N_f = 2$ and $N_f = 2 + 1 + 1$

Krzysztof Cichy

LATTICE 2013 - 12 / 27

Krzysztof Cichy

LATTICE 2013 - 13 / 27

compare to direct determination [talk by E. García Ramos] $r_0 \Sigma_{\beta=3.9}^{1/3} = 0.696(20), \quad r_0 \Sigma_{cont}^{1/3} = 0.689(33)$

LATTICE 2013 – 14 / 27

Krzysztof Cichy

All data for $N_f = 2 + 1 + 1$

Krzysztof Cichy

LATTICE 2013 - 15 / 27

compare to direct determination [talk by E. García Ramos] $r_0 \Sigma_{cont,N_f=2+1+1}^{1/3} = 0.680(29)$

Krzysztof Cichy

LATTICE 2013 - 16 / 27

compare to direct determination [talk by E. García Ramos] $r_0 \Sigma_{cont,N_f=2+1+1}^{1/3} = 0.680(29)$

Krzysztof Cichy

LATTICE 2013 - 17 / 27

Introduction

Results - $N_f = 2$ and $N_f = 2 + 1 + 1$

Results – quenched Z_P/Z_S – M_R -dependence for $N_f = 2$

 Z_P / Z_S – M_R -dependence for $N_f = 0$

Results – $N_f = 0$

Witten-Veneziano formula

MC histories

Histograms

Summary

Results – quenched

β	κ_c	$(L/a)^3 \times T/a$	$a\mu$	r_0/a	lat.spac. [fm]
2.37	0.158738	$20^3 \times 40$	0.0087	3.593(35)	0.139
2.48	0.154928	$24^3 \times 48$	0.0074	4.233(55)	0.118
2.67	0.150269	$32^3 \times 64$	0.0055	5.691(32)	0.088
2.85	0.147180	$40^3 \times 80$	0.0043	7.290(68)	0.069

 $N_f = 0$ configurations generated with the lwasaki gauge action

LATTICE 2013 - 18 / 27

 $Z_P/Z_S - M_R$ -dependence for $N_f = 2$

RI-MOM results ($\beta = 3.9, 4.05, 4.2$) [C. Alexandrou et al. 2012] X-space result ($\beta = 4.35$) [K. Cichy, K. Jansen, P. Korcyl 2012]

Krzysztof Cichy

LATTICE 2013 - 19 / 27

 $Z_P/Z_S - M_R$ -dependence for $N_f = 0$

Results – $N_f = 2$ and $N_f = 2 + 1 + 1$

Results – quenched Z_P/Z_S – M_R -dependence for $N_f = 2$

Results – $N_f = 0$ Witten-Veneziano

formula

MC histories

Histograms

Summary

 $Z_P/Z_S - M_R$ -dependence for $N_f = 0$


```
Results – N_f = 0
Witten-Veneziano
formula
```

MC histories

Introduction

Histograms

Summary

LATTICE 2013 - 21 / 27

Krzysztof Cichy

Results – $N_f = 0$

	β	$a^4\chi$	r_0/a	Z_P/Z_S	$r_0^4\chi({ m stat.})(r_0/a)(Z_P/Z_S)$
Introduction	2.37	7.19(36)e-5	3.593(35)	0.667(30)	0.0269(14)(10)(24)
Results – $N_f = 2$ and $N_f = 2 + 1 + 1$	2.48	4.36(23)e-5	4.233(55)	0.701(13)	0.0285(15)(15)(11)
 Results – quenched	2.67	2.03(14)e-5	5.691(32)	0.749(7)	0.0379(27)(9)(7)
${Z_P / Z_S $ – ${M_R}$ -dependence for	2.85	1.10(16)e-5	7.290(68)	0.785(5)	0.0504(71)(19)(10)
$N_f = 2$ $Z_P/Z_S - M_R$ -dependence for $N_f = 0$ Results - $N_f = 0$ Witten-Veneziano formula MC histories Histograms Summary		0.06 0.05 0.04 • • • • • • • • • • • • • • • • • • •	cont.lin 0.01 0.02	$r_0^4 \chi =$ N mit $r_0^4 \chi = 0.048$ $r_0^4 \chi = 0.048$ $r_0^4 \chi = 0.048$	= 0.048(7) = 0.048(7) = 0 = 0 (7) = 0.05 0.06 0.07 0.08

Krzysztof Cichy

LATTICE 2013 - 22 / 27

Introduction

 Z_P/Z_S -

 Z_P/Z_S -

 $N_{f} = 2$

 $N_{f}^{-} = 0$

formula

Summary

MC histories Histograms

Results - $N_f = 2$ and $N_f = 2 + 1 + 1$

Results – quenched

 $\dot{M_B}$ -dependence for

 M_B -dependence for

Results – $N_f = 0$

Witten-Veneziano

Witten-Veneziano formula

Final result: $r_0^4 \chi = 0.048(7)$ using $r_0 = 0.5$ fm: $\chi = (185 \pm 7 \text{ MeV})^4$

compare to: $r_0^4 \chi = 0.059(3)$ [L. Del Debbio, L. Giusti, C. Pica, 2005]

```
using r_0 f_K to set the scale: \chi = (191 \pm 5 \text{ MeV})^4
or using r_0 = 0.5 fm: \chi = (194.5 \pm 2.4 \text{ MeV})^4
```

```
r_0^4 \chi = 0.061(6) [M. Lüscher, F. Palombi, 2010]
using r_0 = 0.5 fm: \chi = (196.5 \pm 5.1 \text{ MeV})^4
```

Witten-Veneziano formula [E. Witten, 1979], [G. Veneziano, 1979] explains the origin of the mass of the η' meson (non-zero in the chiral limit) real-world $m_{\eta'} = 957.66(24)$ MeV

$$\frac{f_{\pi}^2}{6} \left(m_{\eta}^2 + m_{\eta'}^2 - 2m_K^2 \right) = \chi_{\infty}$$

leading order in 't Hooft's large- N_c limit ($N_c \rightarrow \infty$, $g \rightarrow 0$, $\lambda = g^2 N_c$ fixed) LHS: computed in full QCD, experimental: $(180 \text{ MeV})^4$ RHS: computed in the quenched approximation

Krzysztof Cichy

LATTICE 2013 - 23 / 27

Autocorrelations

Krzysztof Cichy

LATTICE 2013 - 24 / 27

Autocorrelations

Krzysztof Cichy

Histograms of topological charge

Krzysztof Cichy

LATTICE 2013 - 26 / 27

Conclusions

- Computing the topological susceptibility for dynamical simulations is very difficult:
 - * one has to sample properly the topological charge distribution, such that one obtains a Gaussian distribution and $\langle Q_{top} \rangle = 0$,
 - * long autocorrelations at small lattice spacings
 - * with spectral projectors: statistics of $\mathcal{O}(200)$ confs gives a statistical error of $\mathcal{O}(10-20)\%$ (for Σ it is only $\mathcal{O}(1-2)\%$)
- Still, the spectral projector method seems to be a very promising approach:
 - \star especially if one can afford longer runs
 - * much cheaper than the index method
 - \star and other methods have theoretical problems (e.g. gluonic definition of $Q_{
 m top}$)
- Σ extracted from χ vs. μ dependence agrees with the one from direct calculation (but: rather large error and neglecting higher orders of χ PT)
- Quenched case: χ_{∞} agrees with earlier determinations; good agreement with the Witten-Veneziano relation

Thank you for attention!

LATTICE 2013 - 27 / 27

Krzysztof Cichy