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Introduction

» U (1) axial symmetry is anomalously broken.
» The quark mass is not protected by symmetry, and could
receive arbitrary quantum corrections.
» Should there be an additive renormalization to the quark
mass?
» Convention field theory shows that there isn't, because of the

lack of enough small instantons.
» The quark mass is ambiguous. [Creutz, 2004]

Conclusion of this talk:
» For Nf =1 QCD, there can be additive renormalization of the
fermion mass generated by lattice scale instantons for a class
of lattice actions.



Outline

» Anomalous mass generation by lattice scale instantons and a
numerical study.

> A theoretical estimation of the density of lattice scale
instantons and continuum limit.

» Explore the design space of lattice action.



Anomalous mass generation by lattice scale instantons

A mass term would be generated by instanton-like gauge field
configurations.['t Hooft, 1976]
2
a
Manom ~ —Pa (1)
m

> ais lattice spacing
» m is the input quark mass

> p, is the density of the lattice scale instantons



't Hooft Effective Lagrangian ['t Hooft, 1976]

The fermion zero mode g (x) of an instanton of radius R at origin
would contribute to the Green’s function outside the instanton as:

(90T = o (x) o (y)
Ry#xt 1 Ry”yY (2)
T m y4

In momentum space, the contribute to the propagator by fermion
zero modes is:

p(R)dR is the density of instanton of radius R



't Hooft Effective Lagrangian ['t Hooft, 1976]

A mass term will be generated by instantons upto the scale of
instanton size.

I:p(R)dR (4)

We are interested in the “hard” fermion mass which act like a
normal fermion mass term in all scale. This mass term cannot be
generated by intantons of physical size, it can only come from
lattice scale instantons, so

5]

Manom ~ ;Pa (5)



Anomalous mass generation by lattice scale instantons

The Landau-gauge-fixed fermion propagator using volume source
and volume sink takes the following form

_ 1/Zq (p)
> = 5 e (p) (6)
Py =sinp,

The renormalization factor Z; and the renormalized mass mg
could be extracted by (RI/MOM [Sturm et al., 2009])

mg (p) = 1/Zq (p) Tr [S~*(p)]
ip? (7)
1/Z4(p) = Tr[pgl(p)]
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Anomalous mass generation by lattice scale instantons

Figure : mg for 8 = 8.2 ¢; = 0.05, quenched lattice 16*, with M = 1.8,
L =64
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Anomalous mass generation by lattice scale instantons

Figure : mg for 8 = 8.3 ¢; = 0.05, quenched lattice 16*, with M = 1.8,
L =64
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Quark condensate, T, and momentum scale

Figure : Determine the momentum scale relative to T,
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Anomalous mass generation by lattice scale instantons

» We do see a 1/m enhanced mass term suggesting an
anomalous mass.

» This behavior survives up to p ~ 1/a implying a hard mass up
to the lattice scale.

» However, it would be very hard to study the continuum limit.

> Instead, try a theoretical analysis.



Density of lattice scale instantons and continuum limit

For Nf = 1, the density of instantons p (R) of radius R is
approximately['t Hooft, 1976]

dR 82
p(R)dR ~ mRﬁ exp (_g(R)Z) 9)

Above formula should be most accurate when R is small. One
might expect for lattice scale instantons

1 < 87rz>
Pa~ ma—exp | — (10)
a* g3
Here, g, is the coupling constant at lattice scale. Unfortunately,
the p, and m,nom would vanish in the continuum limit (a,g, — 0
follows renormalization group equation).



Density of lattice scale instantons and continuum limit

Assume the minimum action of a lattice-scale instanton is

8 2
Ainst = alz (11)

a

The density of lattice scale instanton should be

1 87
pa~ Ma_g exp (—ag3> (12)

Assumptions

» For an instanton-like gauge configuration, the fermion
determinent would contribute only a factor of ma, since other
modes are not affected much by the instanton.

» If we divide the infinite lattice into size-fixed sub-blocks(e.g.
16*), the probabilities of having an instanton in each block are
independent.



The lower bound of the probability of having an instanton in a
pure gauge, size-fixed lattice, e.g. 164

16* — j:lnstanton [D U] exp (7“4 [U])
Ppure gauge f [DU] xp (—.A [U])
AQ exp (—a% — ?;)
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The upper bound of the probability of having an instanton in a
pure gauge, size-fixed lattice, e.g. 164

164 _ finstanton [D U] exXp (_‘A [U])
Poure gavee = = [ [DUTexp (—A[U])
Qexp (—a 22
< L (14)
AQ exp ( )

con(-0-0%)
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Density of lattice scale instantons and continuum limit

22

Manom ~ ——Pa
m

1 872
pawmaajexp —a—

with the renormalization equation

872 2 1
—~ (11— =N¢ ) In-
g2 ( 3 f) "a

(15)

(16)

(17)

We got our final expression for the anomalous quark mass term.

31
Za—1
Manom ~ a3

(18)



Density of lattice scale instantons and continuum limit

Given the minimum action of a lattice-scale instanton

82
Ainst =« 2 (19)
a

The generated anomalous mass would scale like

31

~ a?a_l (20)

manom

So, if the generated anomalous mass term does not vanish in the
continuum limit, we should have

3
< > ~ 0097 21
“=37 (21)

Above criteria is the necessary and sufficient condition.



Explore the design space of lattice action
Wilson Action

B
=32 Pt
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o < 0.83
Rectangular Action
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o < 0.69

Recall the definition of «,
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Explore the design space of lattice action
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A[U] = -Awilson[U] - Nsample inst[U]AA
AA = Ayiteon[ UL 16316x16] _ a8772 (27)
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Conclusion

For N¢ = 1 QCD, there can be additive renormalization of the
fermion mass generated by lattice scale instantons for a class of
lattice actions.



Thank you
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Calculate minimum instanton action «

Figure : Cooling configuration with one instanton
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Quark condensate and T,
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Quark condensate and T,
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