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Introduction

Will discuss staggered versions of Wilson fermions. These can also
be used as kernel in the construction of domain wall fermions and
overlap fermions on the lattice.

They are theoretically novel, and the hope is that they will also be
computationally more efficient than the usual Wilson-based
fermions, and perhaps have other advantageous features, e.g.
improved chirality.

Main topic of this talk:
Will report on an exploratory numerical investigation of the
computational efficiency of staggered Wilson fermions compared to
usual Wilson fermions in quenched Lattice QCD.

But first some general background...



What are staggered Wilson fermions?

Usual Wilson fermion:

Naive fermion (16 species) + Wilson term

→ 1 physical species, 15 doublers

Staggered Wilson fermion (the idea):

Staggered fermion (4 species) + ”staggered Wilson term”

→ 1 or 2 physical species, 3 or 2 doublers



Background

I Staggered Wilson fermions originated from an attempt to
identify and understand the would-be zero-modes and index of
the staggered Dirac operator, and construct overlap fermions
from staggered fermions [D.A., PRL (2010), PLB (2011)]

I Would-be zero modes identified from spectral flow of hermitian
version of staggered Dirac operator
→ get staggered version of overlap Dirac operator
→ get staggered Wilson operator as kernel of staggered
overlap operator

I Number of fermion flavors reduced from 4 to 2 by “staggered
Wilson term”

I 1-flavor version proposed later based on a different “staggered
Wilson term” [C. Hoelbling, PLB (2011)].



Staggered Wilson terms in general

Can construct from combinations of the “flavored mass terms” for
staggered fermions introduced in [Golterman & Smit, NPB (1984)].
– lifts the degeneracy of the 4 staggered fermion flavors

⇒ Can tune the usual mass to make one of the staggered fermion
flavors massless.

Put in an overall factor 1/a ⇒ get one massless flavor and 3
flavors with masses ∼ 1/a.

Thus 4 species (flavors) described by the original staggered fermion
is reduced to 1 physical species and 3 doublers.

(If the flavored mass term has residual degeneracy, the number of
physical species is only be reduced to 2.)



Two serious problems for this construction:

(1) The Golterman–Smit flavored mass terms break rotation
symmetry and various staggered fermion symmetries.

→ expect new fermionic and gluonic counterterms

→ fine-tuning required to cancel the new counterterms and to
keep the theory in a 1-flavor (or 2-flavor) phase.

(2) chirality problem: γ25 = 1 is not exactly satisfied by the
staggered version of γ5

⇒ E.g. can’t use staggered Wilson fermion with usual staggered
version of γ5 to make staggered versions of overlap and domain
wall fermions.

Recent development: both of these problems have been
solved.
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Solution to (1) – the problem of broken symmetries:

One of the flavored mass terms preserves rotation symmetry.
→ make staggered Wilson term solely from this.

But it has 2-fold mass degeneracy
→ get 2 (not 1) physical fermion species.
(This was the original 2-flavor construction of D.A.)

Still breaks a subset of the staggered fermion symmetries (the
“shift symmetries”).

Allows one new dimension 4 operator...

...fortunately its only effect on the 2 physical fermion species is a
wavefunction renormalization!



The issue of broken symmetries in the 1-flavor case

The flavored mass term for the 1-flavor construction of staggered
Wilson fermions in [Hoelbling, PLB (2011)] breaks rotation
symmetry.

A residual subgroup of rotation symmetry survives though.

Turns out there are no new fermionic counterterms (besides the
already mentioned one) [S. Sharpe, Kyoto workshop 2012].

But there is a new gluonic counterterm.

It shows up in the 1-loop contributions to the gluonic 2-, 3- and
4-point functions [D.A. (to appear)].

→ would need to be included in the bare action and fine-tuned...



Solution to (2) – the chirality problem:

Recall staggered fermions have an exact flavored chiral symmetry.

The corresponding flavored γ5, which we denote Γ55, exactly
satisfies Γ2

55 = 1, and has spin⊗flavor interpretation

Γ55 = γ5 ⊗ ξ5

(ξµ = rep of Dirac algebra in flavor space).

→ If staggered Wilson term is chosen such that ξ5 = 1 on the
physical fermion species, then

Γ55 = γ5 ⊗ 1 on physical species

→ Can use Γ55 for the unflavored γ5 in the staggered Wilson
fermion theory!

Works for the constructions of D.A and Hoelbling.
(Also relies on a technical miracle – see [D.A., Lattice 2010 Proceedings].)



The 2-flavor staggered Wilson Dirac operator

DsW = Ds +
r

2a

(
1− Γ55Γ5

)
+ m

Ds = iηµ∇µ = usual staggered Dirac operator

Γ5 = γ5 ⊗ 1 + O(a2) = usual unflavored staggered γ5

Γ55 = γ5 ⊗ ξ5 = flavored staggered γ5

Note that in the “Wilson term” we have

1− Γ55Γ5 = 1⊗ 1− 1⊗ ξ5 + O(a2)

Thus the 2 physical flavors are the ones on which ξ5 = 1, while the
2 doubler flavors are the ones on which ξ5 = −1.

→ The requirement of ξ5 = 1 on the physical species is satisfied,
so can take Γ55 as the flavor singlet γ5 in for the staggered Wilson
fermion theory in this case.



Motivation for 2-flavor staggered Wilson fermions

I Computationally more efficient than usual Wilson (hopefully)

I Genuinely new → use for universality checks in Lattice QCD

Drawback: SU(2) symmetry of the 2 physical flavors is broken by
lattice effects (just like SU(4) symmetry of the usual staggered
fermion flavors is broken by lattice effects).

However, situation for flavor singlet physics with 2-flavor staggered
Wilson is just as good as for usual Wilson.

→ Arenas where it may be useful if computational efficiency is
confirmed:

I Precision computation of η′ mass (and other flavor-singlet
physics).

I Finite temperature QCD (esp. computation of bulk quantities
and axial anomaly issue).



Numerical study

Investigated computational efficiency of 2-flavor staggered Wilson
fermions compared to usual Wilson fermions in quenched lattice
QCD simulation.

163 × 32 lattice, β = 6, 200 configurations.

Used the Chroma/QDP software for Lattice QCD
(→ implementation of usual Wilson fermion is beyond reproach)

Goal:
Determine ratio of CPU times for computing the quark propagator
as a function of the pion mass

To be meaningful, the comparison must be done at fixed
values of a physical quantity! We use the pion mass.

→ First need to determine the pion mass as a function of the bare
quark mass for usual Wilson and staggered Wilson.



Pion mass as function of bare quark mass
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Quark propagator computation time

Can be decomposed as

time = (number of CG iterations)×(time per iteration)

→ Ratio of computation times for usual Wilson (W) and staggered
Wilson (sW) decomposes as

timeW
timesW

= 4×
( itersW

iterssW

)
×
( time per iterW

time per itersW

)
.

Factor 4 because 12 sources for usual Wilson quark propagator vs.
3 sources for staggered Wilson.

This allows a theoretical estimate of the computation time ratio.

Both ratios on the right-hand side can be estimated individually



Ratio estimates

(1)
itersW
iterssW

≈
√
κW√
κsW

.

κW and κsW are the condition numbers of the lattice fermion
matrix D†D in the CG inversions for usual Wilson and staggered
Wilson cases.

This approximation is expected to get better for smaller residue ε
in the CG inversion.

(2)
time per iterW
time per itersW

=
flopsW
flopssW

=
1392

1743
= 0.799

‘flops’ denotes the number of FLOPs per lattice site for the lattice
Dirac operator (usual Wilson or staggered Wilson).



From direct measurement of computation time we find

time per iterW
time per itersW

≈ 0.60.

Explanation for why this is less than the flop ratio 0.799:

The staggered Wilson term couples opposite corners of lattice
hypercubes
→ Need to implement this in the Chroma/QDP software as a
sequence of shifts of one step along each lattice direction.

These shift operations add nothing to the flop count, but they are
computationally relatively expensive!

In principle it should be possible to extend the QDP code to allow
shifts between opposite corners of hypercubes in a single operation.

– this would significantly reduce the computation time per
iteration for staggered Wilson.



Condition number ratio at m2
π = 0.10
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CG iterations ratio at m2
π = 0.10 with ε = 10−6
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CG iterations ratio at m2
π = 0.10 with ε = 10−10
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CG iterations ratio (average) as a function of pion mass
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Computation time ratio (average) as a function of pion
mass
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Staggered Wilson expected to be even more efficient for
overlap and domain wall constructions

Reason: the spectrum of the staggered Wilson operator is closer to
the Ginsparg–Wilson circle.

Free field spectrum [P. de Forcrand, Lattice 2010 conf.]:

Green: Eigenvalues of free field DsW (staggered Wilson)
Blue: Eigenvalues of free field DW (usual Wilson)
.
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Staggered Wilson expected to be even more efficient for
overlap and domain wall constructions

Need to compare the efficiency of staggered overlap vs usual
Wilson overlap in a meaningful way:

I Compare at fixed values of a physical quantity (e.g. pion
mass)

I The negative mass in the kernel operator D −m0 needs to be
chosen appropriately. Don’t use same value for staggered
Wilson and usual Wilson!

I Canonical value (free field case) is m0 = 1 (in lattice units.

But for Lattice QCD simulation should use m0 = 1 + mc ,
where mc is the critical quark mass at which the pion mass
vanishes (i.e. chiral limit)

Note: mc is different for staggered Wilson and usual Wilson!
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