PLQCD

A.M. Abdel-Rehim (The Cyprus Institute, CaSToRC)

Lattice 2013, Mainz, July 28, August 4, 2013

PR4

Partners

- C. Alexandrou, A. Abdel-Rehim, G. Koutsou (Cyl, CaSToRC)
- I. Liabotis, N. Anastopoulos, N. Papadopoulou (GRNET)

PLQCD

- Software developed under PRACE 2IP, WP8.
- Main focus is on scaling of community codes on large number of cores.
- Two community codes are considered: tmLQCD by ETMC and Chroma by USQCD.
- Partnetrs: CaSToRC, GRNET, U. of Coimbra

Selected Activities

- Wilson Dirac operator with MPI+openMP (PLQCD).
- Implementing efficient linear solvers for tmLQCD.
- Other contributions by U. of C.

Dirac operator work

- Overlap communications and computations.
- Use MPI+openMP to improve scaling.
- Use a compact representation of the Gauge links.
- Using AVX instructions.
- Improving SIMD parts using compiler intrinsics.

Overlap of Communications and computations

- Compute $(1 \gamma_{\mu})\varphi(x)$ and $(U_{\mu}(x))^{-1}(1 + \gamma_{\mu})\varphi(x)$ on the boundaries and send/recieve them to neighbouring processes using non-blocking MPI send/recv.
- Compute $(1 \gamma_{\mu})\varphi(x)$ and $(U_{\mu}(x))^{-1}(1 + \gamma_{\mu})\varphi(x)$ on the bulk.
- Wait for communications to finish.
- Compute results on all sites.

Effect of Random Access of Sites

PARTNERSHIP FOR ADVANCED COMPUTING

Weak Scaling Tests

Using Intrinsics and 2x3 Links

tmLQCD benchmark on Todi (Cray XE6), strong scaling, L=16, T=32

Using AVX

Lattice Size

Implement New Efficient Linear Solvers

- Incremental EigCG: CG+deflation for SPD case (found to be efficient for Twisted-Mass LQCD)
- Incremental EigBiCG: BiCG/BiCGStab+ deflation for Non-symmetric case.
- (Worked on small lattices but was less efficient on large volumes).
- GMRES-DR/BiCGStab (under development).

Eig-CG Linear Solver Results

Partnership For Advanced Computing IN Europe

Comparing EigCG with GMRES-DR

Incremental EigCG

- System has to be converted to a Hermitian Positive Definite
- Eigenvectors needed for deflation are collected incremental while solving few linear systems (10-20)

GMRES-DR/ D-BiCGStab

Original non-Hermitian system solved directly with GMRES or BICGStab.

Eigenvectors needed for deflation are computed while solving the first linear system. Partnership For Advanced Computing IN Europe

GMRes-DR and Deflated BiCGStab on a ETMC configuration with two dynamical flavors L=24, T=48, Kappa=0.160859, mu=0.004, arXiv:0710.1831

Other Contributions to PLQCD

Landau gauge fixing (Paulo Silva, in collaboration with Orlando Oliveira)

- On the lattice, gauge fixing is usually formulated as a numerical optimization problem
- Local optimization methods usually suffer from critical slowing down.
- Critical slowing down can be reduced by Fourier acceleration.
- We have implemented a MPI parallel version of the Fourier accelerated Steepest Descent method using the Chroma library http://usqcd.jlab.org/usqcd-docs/chroma/
- For FFT's we use the PFFT library allows parallelization up to L^3 processors http://www-user.tu-chemnitz.de/~mpip/software.php

 results show a good strong scaling up to 16000 cores for lattice sizes up to 128⁴

HMC integrator tuning using Poisson brackets (Paulo Silva, in collaboration with Balint Joo, Mike Clark, Tony Kennedy)

 Main goals: provide Poisson bracket measurements to the users, as well as force-gradient integrators

A. D. Kennedy, P.J. Silva, M. A. Clark, Phys. Rev. D 87, 034511

- We rely on a modified version of Chroma, which involves rewriting force calculation routines - a driver routine to compute all PB before/after MD step
- Integrator tuning allows a reduction in computational cost
- Force-gradient integrators are also expected to decrease computational cost for large volume simulations
- At present: working with Clover action

Summary

- We worked on certain important components of tmLQCD and Chroma.
- We obtained encouraging results which we hope will benefit the community.
- Codes developed are publically available.
- More fine tuning will be implemented in the future.