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Partners

o C. Alexandrou, A. Abdel-Rehim, G. Koutsou (Cyl, CaSToRC)

. |. Liabotis, N. Anastopoulos, N. Papadopoulou (GRNET)
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PLQCD

. Software developed under PRACE 21P, WPS8.

« Main focus is on scaling of community codes on large
number of cores.

« Two community codes are considered: tmLQCD by
ETMC and Chroma by USQCD.

o Partnetrs: CaSToRC, GRNET, U. of Coimbra
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Selected Activities

« Wilson Dirac operator with MPI+openMP (PLQCD).
. Implementing efficient linear solvers for tmLQCD.

« Other contributions by U. of C.
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Dirac operator work

« Overlap communications and computations.

« Use MPI+openMP to improve scaling.

. Use a compact representation of the Gauge links.
. Using AVX instructions.

Improving SIMD parts using compiler intrinsics.
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Overlap of Communications and computations

- Compute (1 — yﬂ)go(x) and (Uﬂ(x)) 1(1 +v,)e(x) on
the boundaries and send/recieve them to
neighbouring processes using non-blocking MPI
send/recv.

-1
- Compute (1 —y,)e(x) and (U,(x)) (1 +y,)e(x)on
the bulk.
 Wait for communications to finish.

« Compute results on all sites.
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Weak Scaling Tests

Hopping Matrix Weal Scaling, Lattice/thread 8x8x8x8, Cray XE6 Hopping Matrix Weal< Scaling, Lattice/thread 12x12x12x12 , Cray XE6
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Using Intrinsics and 2x3 Links

tMLQCD benchmark on Todi (Cray XE6), single core tmLQCD benchmark on Todi (Cray XEB), strong scaling, L=16, T=32
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L=48, T=96, tmLQCD benchmark, Cray XE6
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Using AVX

tmLQCD Hopping Matrix Benchmarls with AV and S5E3,
Intel Sandy Bridge at GRMNET
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Implement New Efficient Linear Solvers

. Incremental EigCG: CG+deflation for SPD case
(found to be efficient for Twisted-Mass LQCD)

. Incremental EigBICG: BICG/BICGStab+ deflation for
Non-symmetric case.

(Worked on small lattices but was less efficient on large
volumes).

. GMRES-DR/BICGStab (under development).
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Eig-CG Linear Solver Results
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N_E=6%+1+1, beta=2.1, L=48, T=96, mpi=230 MeV, m=60, k=10, Nev=300
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Comparing EigCG with GMRES-DR

Incremental EigCG

System has to be converted
to a Hermitian Positive
Definite

Eigenvectors needed for
deflation are collected
iIncremental while solving few
linear systems (10-20)

GMRES-DR/ D-BiCGStab

Original non-Hermitian
system solved directly
with GMRES or
BICGStab.

Eigenvectors needed for
deflation are computed
while solving the first
linear system.



PARTNERSHIP

FOR ADVANCED COMPUTING
IN EUROPE

\

GMRes-DR and Deflated BiCGStab on a ETMC configuration with two dynamical flavors
L=24, T=48, Kappa=0.160859, mu=0.004, arXiv:0710.1831
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Other Contributions to PLQCD

Landau gauge fixing (Paulo Silva, in collaboration with Orlando Oliveira)

On the lattice, gauge fixing is usually formulated as a numerical
optimization problem

Local optimization methods usually suffer from critical slowing
down.

Critical slowing down can be reduced by Fourier acceleration.

We have implemented a MPI parallel version of the Fourier
accelerated Steepest Descent method using the Chroma library
http://usgcd.jlab.org/usgcd-docs/chroma/

For FFT's we use the PFFT library allows parallelization up to L"3
processors http://www-user.tu-chemnitz.de/~mpip/software.php
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« results show a good strong scaling up to 16000 cores for lattice
Sizes up to 128"

Speed-up Landau gauge fixing with FFT acceleration
128%, B=6.0
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HMC integrator tuning using Poisson brackets
(Paulo Silva, in collaboration with Balint Joo, Mike Clark, Tony Kennedy)

Main goals: provide Poisson bracket measurements to the users, as well
as force-gradient integrators

A. D. Kennedy, P.J. Silva, M. A. Clark, Phys. Rev. D 87, 034511

We rely on a modified version of Chroma, which involves - rewriting force
calculation routines - a driver routine to compute all PB before/after MD
step

Integrator tuning allows a reduction in computational cost

Force-gradient integrators are also expected to decrease computational
cost for large volume simulations

At present: working with Clover action
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Summary

« We worked on certain important components of
tmLQCD and Chroma.

« We obtained encouraging results which we hope will
benefit the community.

« Codes developed are publically available.

* More fine tuning will be implemented in the future.



