	Solvers 00000	AMA 0000000000000000	

Progress in Algorithms and Numerical Techniques

Chulwoo Jung Brookhaven National Laboratory

August 2, 2013 Lattice 2013 Johannes Gutenberg Universität, Mainz, Germany

A (1) > A (1) > A

Chulwoo Jung Brookhaven National Laboratory

Intro 0		Solvers 00000	AMA 00000000000000000000	

Introduction

From hep-lat/0411006. 2f DWF

TABLE I: Small lattice comparison of HMC evolutions. All these evolutions use the Wilson gauge action with $\beta = 5.2$ and two flavours of Domain Wall Fermions with a bare mass of $m_{sea} = 0.02$.

Force Term	Δt	$\operatorname{Steps}/\operatorname{Trajectory}$	Trajectories	Acceptance	$\operatorname{CG-iterations}/\operatorname{Trajectory}$	$C_{\Delta H}$
Old	1/64	33	1000-1880	87%	8336	26.5
Old	1/32	17	1000-1929	59%	4310	30.0
New	1/32	17	1000-1936	79%	4179	12.9

Advances in integrator(multiscale,Omelyan,Force Gradient..), Mass preconditioning, Rational Hybrid Monte Carlo(RHMC), Domain decomposition, etc allowed exact dynamical evolution at or near physical m_l with only relatively small (~10) number of light quark inversions per MD.

For review, S. Schaefer (Lat12), CJ(Lat09), K. Jansen(Lat08) M. Clark (Lat06),

Intro •	Solvers 00000	AMA 0000000000000000	

What about measurements??

- Bigger step size for light quark during MD means often number of light quark inversions per configurations for measurements far exceeds those for evolution.
- While Rational approx. has made it possible to tune the approximation during MD and preserve acceptance, one is often forced to adopt conservative criteria (tighter stopping condition, etc) for propagators, which hampers aggressive use of progress in solver.
- Better ways of taking advantage of the characteristic of *p* necessary, for a large number of light quark inversion per configuration.
- Improving solver performance : Deflation techniques
- Error reduction techniques: All Mode Averaging

Evolution	Solvers 00000	AMA 000000000000000000000	

Evolution(autocorrelation)

McGlynn, Mon. 1D

Topological charge on central half of lattice (excludes boundary regions)

EOO 4000 4EOO EOOO EEOO 6000 6EOO 7000 7EOO 8000

Chulwoo Jung Brookhaven National Laboratory

	Solvers 00000	AMA 0000000000000000	

Solvers

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - bD^{-1}C & 0 \\ D & D \end{bmatrix} \begin{bmatrix} I & 0 \\ DC^{-1} & I \end{bmatrix}$$
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} I & 0 \\ -D^{-1}C & I \end{bmatrix} \begin{bmatrix} (A - BD^{-1}C)^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \begin{bmatrix} I & -BD^{-1} \\ 0 & I \end{bmatrix}$$

Find *D* which improves condition number of $A - BD^{-1}C$ efficiently. $A - BD^{-1}C$ is easy to apply if:

・ロン ・回 と ・ ヨ と ・ ヨ と …

E 990

- **D** = I_n (even-odd preconditioning)
- D local in 4d (Clover, Mobius...)
- D is approx. eigenspace (eigCG(Orginos et al.))
- \blacksquare None of the above? \rightarrow Inexact deflation, Multigrid, ...

	Solvers ●0000	AMA 0000000000000000	

Local coherence(Luscher): Many low modes are locally similar \rightarrow we can construct effective D from small number of approx. low modes by domain decompsition. Crucial in controlling setup time for D.

문 문 문

Chulwoo Jung Brookhaven National Laboratory

	Solvers 0●000	AMA 0000000000000000	

However "Devil is in the Details"... D^{-1} can be very inefficient on parallel machines:

• D built form block size $L^4(\times Ls)$ has

$$\left.\begin{array}{c} \text{flops reduced by } L^4(\times Ls)\\ \text{Communication size reduced by } L^3(\times Ls)\\ \text{latency not reduced}\end{array}\right\} \times \text{by iter}(D^{-1})$$

quickly becomes communication bounded. This will only get worse for future machines.

- For non-Wilson/Clover, even-odd precondited $D^{\dagger} D$ makes D highly nontrivial.
- Have to find ways to invert D efficiently, or ways to do less of it! Until recently, success varied (more successful for Wilson/Clover, less for other fermions)

	Solvers	AMA	
	00000		

Deflated solvers: Wilson/Clover

 Domain Decomposition/aggregation based Adaptive Algebraic Multigrid (DD-αAMG) (Rottmann, Mon. 1D) Multi-level DD-αAMG(arXiv:1303.1377) implemented and tested for up to 4 levels. Found 3 level MG much better than 2 for larger Wilson lattices.

 Adaptive Multigrid on GPU (M. Clark, Tue. 4G) Multigrid being implemented in QUDA (USQCD SciDAC) framework. Staggered/Clover preconditioner.

(日) (同) (三) (三)

э

	Solvers 000●0	AMA 00000000000000000000000000000000000	

Hierarchically Deflated CG(HDCG) (P. Boyle, Mon. 1D)

First "practically successful" results on non-Wilson fermions.

- Preconditioned DWF, up to 4th-nearest neighbor interactions
- Use heavy $(M \sim 1)$ inversion as high-frequency preconditioner.
- Move D^{-1} to preconditioner, Exact deflation of (128 256) low modes of D + relaxed stoppint condition ($\sim 10^{-2}$) for D^{-1} to decrease iteration number for D^{-1} to O(50)
- Employed A-DEF2(Tang et al, J. Sci. Comput(2009) 340) preconditioned solver. Robust against relaxed precision of D⁻¹.

	EigCG	HDCG
Vec #	600	40
Setup	10h	40min
$Mixed(10^{-8})$	320s	155s
$Mixed(10^{-4})$	55s	8s

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

48 ³	\times 96 \times	: 24,	$a\sim$	0.11fm	on	1024-node	ΒG	/Q((32	threads)
-----------------	----------------------	-------	---------	--------	----	-----------	----	-----	-----	---------	---

	Solvers 0000●	AMA 00000000000000000000	

Discussion: Evolution, Solvers

- Autocorrelation in HMC for a⁻¹ = 3 ~ 4Gev may need a closer look. Further improvement with Dislocation Enhancing Determinant studied.
- Progress in deflated solvers, now in both Wilson and non-Wilson(DWF). Hierarchically Deflated CG achieves a significant speedup over CG, eigCG.
- There is still a significant variation in hardware specifications (GPU ↔ IBM BG/Q). Optimal choice of details of deflation may depend on hardware environment.

	Solvers 00000	AMA 00000000000000000000000000000000000	

All Mode Averaging(AMA)

(Blum, Izubichi & Shintani arXiv:1208.4349)

Use the translation invariance of LatticeQCD Lagrangian and replace $\mathcal{O}^{(rest),g}$ with $\mathcal{O}^{(rest)}$ for a set of covariant shifts {g}.

$$\begin{split} \mathcal{O}^{(imp)} &= \frac{1}{N_{G}} \Sigma_{g} \left(\mathcal{O}^{(rest),g} + \mathcal{O}^{(approx),g} \right) \\ &\sim \frac{1}{N_{E}} \mathcal{O}^{(rest)} + \frac{1}{N_{G}} \Sigma_{g} \mathcal{O}^{(approx),g} \\ &\mathcal{O}^{(rest)} = \mathcal{O}^{(exact)} - \mathcal{O}^{(approx)} \end{split}$$

This is cost effective when $\mathcal{O}^{(approx)}$ is such that

•
$$\langle (\Delta(\mathcal{O}^{(\textit{rest})})^2 \rangle \ll \langle (\Delta(\mathcal{O}^{(\textit{approx})})^2 \rangle$$

- \$\mathcal{O}^{(approx)}\$ much less expensive than \$\mathcal{O}^{(exact)}\$
- Covariance: $\mathcal{O}^{(approx),g}[U] = \mathcal{O}^{(approx)}[U^g]$ (However, can be relaxed)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Combine low modes with the deflated inversion with relaxed (~ 10^{-4}) stopping condition ("sloppy solve") \rightarrow AMA. Low modes crucial: $\mathcal{O}^{(approx)}$ with only sloppy solve fails for low energy quantities.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ >

э

Chulwoo Jung Brookhaven National Laboratory

	Solvers 00000	AMA ०●००००००००००००	

With (in)exact deflation, a significant saving is achieved by relaxing the stopping condition (typecially factor of \sim 4) compared deflated exact inversions. Control fluctuation of $\mathcal{O}^{(rest)}$ by stopping condition of $\mathcal{O}^{(approx)}$ and/or N_E Variety of deflation and approximation can be used

- (Almost) exact low modes(Lanczos, eigCG) + sloppy solve
- Approx. low modes (inexact deflation, HDCG, Multigrid, \cdots) + sloppy solve
- Deflation + Approx. action (eg. large L_s DWF \leftrightarrow small L_s Mobius) + sloppy solve

∃ nar

	Solvers 00000	AMA 00000000000000000000000000000000000	

Stochastic choice of exact calcuation

Covariance requires that $\mathcal{O}^{(approx)}$ does not have any position dependence. Approx. solution often introduces translational invariance breaking. \rightarrow Choose position for $\mathcal{O}^{(exact)}$ randomly among {g}. $\mathcal{O}^{(approx)}$ just has to be unique/deterministic.

	АМА	
	000000000000000000000000000000000000000	

Relation with other error reduction methods

- Low Mode Averaging(LMA) (Giusti et al., hep-lat/0402002, Degrand & Schaefer, hep-lat/0401011)
- Low Mode Substitution(LMS) (Li et al., arXiv:1005.5424): Random sources on grid points + exact low modes. Improved S/N for 2-pt functions.
- Truncated Solver Methods(TSM) (Bali et al., arXiv:0910.3970): Relaxed inversion (+ low mode deflation). Translational invariance ↔ random source. Used for disconnected diagrams.
- All to all propagators (A2A)(Bali et al., hep-lat/0505012, Foley et al., hep-lat/0505023): Use random sources to allow stochastic evaluation of multiple operators.
- Distillation(Peardon et al., arXiv:0905.2106): Use low eigenmodes of 3d Laplace operator per each time slice. Can be combined with AMA in time direction.

	Solvers 00000	AMA ०००० ००० ०००००००	

AMA applications

 g_A and nucleon form factors on DWF+DSDR $M_\pi \sim$ 170Mev, S. Ohta, M. Lin, Thur. 7B

<i>a</i> (fm)	0.14	8-
Ĺ	$32^3 \times 64 \times 32$	
# config	39	6
<pre># LM(Lanczos)</pre>	2000	
# Exact	4	4 -
# AMA	112	
$(L_s = 16 \text{ Mobius})$	4	2
Cost to 1 under	flated meas.	
Setup	0.7	
$Exact(10^{-8})$	1	10 ⁻⁴ 0.001 0.01 0.1 1
$Sloppy(10^{-4})$	0.01	Chevyshef acceleration(Neff et al. hep-
gain	~ 19	lat/0106106) : Maps unwanted eigenvalues

・ロト ・回ト ・ヨト ・ヨト

	Solvers 00000	AMA ०००० ●०० ०००००००	

w/o AMA : 150 configs \times 4 sources = 600 measurements AMA: 39 configs \times 112 source = 4368 measurements

イロン イ団 とくほ とくほとう

2

Chulwoo Jung Brookhaven National Laboratory

	Solvers 00000	AMA ○○○○ ○●○○ ○○○○○○○	

Hadronic Vacuum Polarization on DWF+I,

0.11
$24^3 imes 64 imes 16$
391
400
1
32
to 1 undefl. meas
2
0.17
0.032
${\sim}10$

 $-\Pi(Q^2)$ (37 config.) from Blum, Christ, Izubuchi & Shintani, in preparation.

・ロト ・回ト ・ヨト ・ヨト

ъ.

Chulwoo Jung Brookhaven National Laboratory

Error reduced by $\sim \sqrt{32}$ compared to exact, 2~3 compared to LMA.

	Solvers 00000	AMA ○○○○ ○○ ●○○○○○○○	

Static heavy-light w. AMA f_{Bd} T. Ishikawa, Tues. 4C

<ロ> <同> <同> < 回> < 回>

ъ.

<i>a</i> (fm)	0.08
L	$32^3 imes 64 imes 16$
# config	64
# LM	130
# Exact	$1(10^{-8})$
# AMA	64 (3 \times 10 ⁻³)
gain	${\sim}5$ over defl. exact

Chulwoo Jung Brookhaven National Laboratory

	Solvers 00000	AMA 00000000000000000000000000000000000	

DWF+I WME measurements @ Physical pion mass

Talks by Juettner (Thurs 7C) Janowski, Mawhinney (Thurs. 8C)					
$B_K, f_\pi, f_K, kl_3, K \rightarrow \pi\pi \cdots$					
Deflation with eigCG (Orgino	s et al., arXiv:0707	7.0131)			
<i>a</i> (fm)	0.08	0.11			
L	$64^3 imes 128 imes 12$	$48^3 imes 96 imes 24$			
# config	21	42			
# LM	1500	600			
<pre># Exact(Stochastic)</pre>	8	7			
# AMA	128	96			
Cost: BG/Q	Cost: BG/Q rack-hours				
Setup	26.2	9.8			
Exact prop (10^{-8})	0.49	0.89			
Sloppy prop (10^{-4})	0.12	0.22			
Orig(Undefl. prop)	2.8	1.8			
gain(light prop.)	~ 7.9	~ 4.6			
Total WME measurement per config	170.2				
1 MD (8 rack)	5.3				

・ロト ・回ト ・ヨト ・ヨト

aakhayan National Laboratony

Chulwoo Jung Brookhaven National Laboratory

	Solvers 00000	AMA ○○○○○○○●○○○○○○	

<ロ> <同> <同> < 回> < 回>

2

Residuals for EigCG setup(black), extra(Red), deflated exact solve(blue).

Chulwoo Jung Brookhaven National Laboratory

< 🗗 🕨

2

・ロト ・回ト ・ヨト ・ヨト

а.

Chulwoo Jung Brookhaven National Laboratory

	Solvers 00000	AMA ○○○○○○○○○○○○○○○○	

Comparison of AMA and exact results for DWF+I endembles (from D. Murphy) Exact/AMA = $7/96(48^3)$, $8/128(64^3)$

Ensemble	Observable	Exact	AMA	$\sigma_{Exact}/\sigma_{AMA}$
	m_{π}	0.08006(51)	0.08065(18)	2.81
	m _K	0.28813(55)	0.28840(23)	2.39
	f_{π}	0.07650(32)	0.07601(13)	2.38
$48^3 imes 96$	f _K	0.09099(37)	0.09063(13)	2.94
	f_K/f_π	1.1894(48)	1.1924(18)	2.65
	B _K	0.58132(851)	0.58363(85)	10.0
	ZA	0.71374(153)	0.71203(20)	7.81
	m_{π}	0.05857(48)	0.05891(26)	1.89
	m _K	0.21563(51)	0.21510(21)	2.50
$64^3 imes 128$	f_{π}	0.05555(29)	0.05545(11)	2.71
	f _K	0.06650(32)	0.06643(13)	2.40
	f_K/f_π	1.1972(63)	1.1980(26)	2.44
	B _K	0.5776(118)	0.5623(12)	10.2
	Z _A	0.74302(147)	0.74344(16)	9.28

Chulwoo Jung Brookhaven National Laboratory

	Solvers 00000	AMA ○○○○○○○○○○○○○○	

Error analysis with AMA

As $\mathcal{O}^{(approx)}$ is factor of $4 \sim 5$ cheaper to calculate, maximizing N_G is cost effective. Appears to give statistically independent measurements for N_G up to ~ 100 . As lattice spacing decreases, autocorrelation in MD is still a concern: AMA results shows we can mitigate this by measuring more per configuration.

Cost effective way to get maximum information per configuration

Relatively small number of configurations can make error analysis less straightforward (What is the error on error?)

This is nothing new - eg. check 1/N correction on jackknife.

What does it say about evolution algorithm in general?

		Solvers 00000	AMA ○○○○○○○○○○○	Extra 0
Summa	rv [.] AMA			

- All mode averaging is a class of covariant approximation which combines delfation with relaxed solver for high modes. Shown to be highly effective for a wide range of observable.
- Can be easily combined with existing deflation techniques(lanczos, eigCG, HDCG, inexact deflation, Multigrid...).
- Already in use for various quantities such as Nucleon stucture function, WME, HVP, Proton Decay, Heavy quark (Static)
- Explorations for other observables, approximations can improve this further.

	Solvers 00000	AMA ००००००००००००००	

Thank you!

・ロト ・回ト ・ヨト ・ヨト

ъ.

Chulwoo Jung Brookhaven National Laboratory

	Solvers 00000	AMA 000000000000000000000	Extra

Wilson $a^{-1} \sim 4 \text{Gev}$

2

Э

Chulwoo Jung Brookhaven National Laboratory