Latest results from the LHC

Lucia Masetti Johannes Gutenberg University Mainz PRISMA Cluster of Excellence

LATTICE 2013 Mainz August 2nd, 2013

LHC and its experiments

The Large Hadron Collider

L. Masetti - 02/08/13

3

LHC performance

	2011	2012	Nominal
Energy per beam (TeV)	3.5	4	7
Bunch spacing (ns)	50	50	25
Number of bunches	1380	1380	2808
Max intensity (protons/bunch)	1.45 x 10 ¹¹	1.7 x 10 ¹¹	1.15 x 10 ¹¹
Peak luminosity (cm ⁻² s ⁻¹)	3.7 x 10 ³³	7.7 x 10 ³³	1.0 x 10 ³⁴

4

ATLAS, CMS and LHCb

	ATLAS	CMS CMS	LHCb Control of the second sec
Size	42 m x 22 m	22 m x 15 m	20 m x 13 m
Weight	7000 ton	12500 ton	5600 ton
Coverage	η <5	η <5	2 <η<5
Vertex resolution	15 µm	15 µm	7 μm
EM calo energy res.	1.2% @ 100 GeV	0.4% @ 100 GeV	1.4% @ 100 GeV
Hadron calo energy res.	6% @ 100 GeV	11% @ 100 GeV	11% @ 100 GeV
Muon momentum res.	10% @ 1 TeV	5% @ 1 TeV	0.6% @ 100 GeV
Particle ID	e/π		e/π/K/p

Luminosity and pile-up

L. Masetti - 02/08/13

6

Latest results...

- ... since Moriond 2013:
- ATLAS: 19 papers, 47 preliminary results
- <u>CMS:</u> 24 papers, 69 preliminary results
- LHCb: 33 papers, 9 preliminary results
- Only a very personal selection of these results will be presented here

L. Masetti - 02/08/13

Direct CPV in charm?

9

Search for direct CPV in D⁰→h⁺h⁻ LHCb: 1/fb @ 7 TeV Phys. Lett. B 723 (2013) 33 D⁰'s from semileptonic B decays µ charge used to tag D⁰ and D⁰ Muon detection and effective production asymmetries cancel in the difference between KK and ππ

$$\Delta A_{CP} \approx \Delta a_{CP}^{\text{dir}} \left(1 + y \frac{\overline{\langle t \rangle}}{\tau} \cos \phi \right) + \left(a_{CP}^{\text{ind}} + \overline{a_{CP}^{\text{dir}}} y \cos \phi \right) \frac{\Delta \langle t \rangle}{\tau} \approx \Delta a_{CP}^{\text{dir}}$$

 $\Delta A_{CP} = (0.49 \pm 0.30 \,(\text{stat}) \pm 0.14 \,(\text{syst}))\%$

L. Masetti - 02/08/13

Cluster of Excellence

Direct CPV in Bs

Direct CPV in B_s⁰→K⁻π⁺ LHCb: 1/fb @ 7 TeV PRL 110 (2013) 221601

Raw asymmetry corrected for instrumental and production effects using D⁰ and Lambda decays and time dependent asymmetry **FIRST OBSERVATION**

 $A_{CP}(B^0 \to K^+ \pi^-) = -0.080 \pm 0.007 \,(\text{stat}) \pm 0.003 \,(\text{syst})$ $A_{CP}(B^0_s \to K^- \pi^+) = 0.27 \pm 0.04 \,(\text{stat}) \pm 0.01 \,(\text{syst})$ $A_{CP}(B^0_s \to K^+ \pi^-) = \mathcal{R}(B^0 \to K^- \pi^+) \,\pi + \text{Holdinkin}$

 $\Delta = \frac{A_{CP}(B^0 \to K^+ \pi^-)}{A_{CP}(B^0_s \to K^- \pi^+)} + \frac{\mathcal{B}(B^0_s \to K^- \pi^+)}{\mathcal{B}(B^0 \to K^+ \pi^-)} \frac{\tau_d}{\tau_s} \quad \frac{\text{H.J. Lipkin}}{(2005)}$

10.5 σ: most precide measurement 6.5 σ: first observation

 $\Delta = -0.02 \pm 0.05 \pm 0.04$ Compatible with SM: $\Delta = 0$

B_s mixing phase

CPV and $\Delta \Gamma_s$ from $B_s^0 \rightarrow J/\Psi K^+K^-$ and $B_s^0 \rightarrow J/\Psi \pi^+ \pi^-$ LHCb: 1/fb @ 7 TeV Phys. Rev. D 87 (2013) 112010 Angular analysis in bins of m(K⁺K⁻) Update of $B_s^0 \rightarrow J/\Psi \pi^+ \pi^-$ analysis Opposite side and same side tagging **MOST PRECISE measurements** of Φ_s , Γ_s and $\Delta\Gamma_s$ ATLAS: 4.9/fb @ 7 TeV **ATLAS-CONF-2013-039** Angular analysis of $B_s^0 \rightarrow J/\Psi K^+K^-$ **Opposite side tagging**

Angles in the helicity basis

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

New observables in $b \rightarrow s \mu \mu$

Differential branching fraction and angular analysis of B⁰→K^{*0}µ⁺µ⁻ LHCb: 1/fb @ 7 TeV <u>arXiv:1304.6325</u> ATLAS: 4.9/fb @ 7 TeV <u>ATLAS-CONF-2013-038</u> CMS: 5.2/fb @ 7 TeV <u>CMS PAS BPH-11-009</u> New observables presented at EPS LHCb: 1/fb @ 7 TeV LHCb-PAPER-037

Form factor independent parameters (<u>arXiv:1303.5794</u>) accessible via folding techniques **3.7 σ discrepancy in P'**₅ at low q²

All other measurements agree with SM prediction

12

30

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Top quark properties

Production and properties

Charge asymmetry Spin correlations Top polarisation Resonances Vector-like quarks Stops

W polarisation Couplings (ttH, tty, ttZ) FCNC

L. Masetti - 02/08/13

15

Single top production

Wt associated production CMS: 12/fb @ 8 TeV <u>CMS PAS TOP-12-040</u>

Multivariate analysis in the dilepton + jet channel **FIRST OBSERVATION** $\sigma_{Wt} = 23.4^{+5.5}_{-5.4} \text{ pb}$

 $|V_{tb}| = 1.03 \pm 0.12(exp.) \pm 0.04(th.)$

ATLAS: 2/fb @ 7 TeV Phys. Lett. B 716 (2012) 142 EVIDENCE

 $\sigma_{Wt} = 16.8 \pm 2.9 \text{ (stat)} \pm 4.9 \text{ (syst) pb}$ $|V_{tb}| = 1.03^{+0.16}_{-0.19}$

L. Masetti - 02/08/13

Direct mass measurement

Latest measurements ATLAS: 4.7/fb @ 7 TeV ATLAS-CONF-2013-046 3D template fit in lepton+jets channel ATLAS: 4.7/fb @ 7 TeV **ATLAS-CONF-2013-077** Template fit in dilepton channel CMS: 3.5/fb @ 7 TeV arXiv:1307.4617 Ideogram method in all-jet channel LHC not yet as precise as Tevatron Work ongoing towards common treatment of systematics JGU Latest results from the LHC

> JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Pole mass measurement

UNIVERSITÄT MAINZ

More mass measurements

Lifetime based measurement CMS: 19/fb @ 8 TeV **CMS PAS TOP-12-030**

 $m_{\rm t} = 173.5 \pm 1.5_{\rm stat} \pm 1.3_{\rm syst} \pm 2.6_{p_T({\rm t})} {\rm GeV}$

Differential measurement CMS: 5/fb @ 7 TeV CMS PAS TOP-12-029

Dependence on kinematic variables sensitive to color connection, initial and final state radiation

m_r-m_t CMS: 19/fb @ 8 TeV **CMS PAS TOP-12-031**

L. Masetti - 02/08/13

19

Latest results from the LHC

 $\Delta m_{\rm t} = -272 \pm 196 \, ({\rm stat.}) \pm 122 \, ({\rm syst.}) \, {\rm MeV}$

JOHANNES GUTENBERG UNIVERSITAT MAINZ

Higgs boson properties

Production and decay

All production and most decay processes are investigated at the LHC

UNIVERSITÄT MAINZ

$H \rightarrow \gamma \gamma$ differential

$H \rightarrow ZZ$

Cluster of Excellence

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

Signal strength in H→WW*→ℓℓvv ATLAS: 25/fb @ 7 and 8 TeV ATLAS: 25/fb @ 7 and 8 TeV arXiv:1307.1427

Transverse mass fit in 12 production and decay categories $\frac{1}{8}$ $\mu = 0.99^{+0.31} - 0.28$

CMS: 25/fb @ 7 and 8 TeV CMS PAS HIG-13-003

2D template fit in 6 production and decay categories

 $\mu = 0.76 \pm 0.21$

L. Masetti - 02/08/13

Latest results from the LHC

200

300

100

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

JGU

400 500 600

m_н [GeV]

JOHANNES GUTENBERG **UNIVERSITAT** MAINZ

Cluster of Excellence

Signal strength in associated production with W or Z ATLAS: 25/fb @ 7 and 8 TeV <u>ATLAS-CONF-2013-079</u>

Mass fit in 26 event categories $\mu = 0.2^{+0.7}$ -0.6

CMS: 25/fb @ 7 and 8 TeV <u>CMS PAS HIG-13-012</u> Fit of multivariate discriminant for different masses $\mu = 1.0\pm0.5$

L. Masetti - 02/08/13

UNIVERSITÄT MAINZ

Signal strength combination

UNIVERSITÄT MAINZ

Couplings

Couplings to vector bosons and fermions from measured signal strengths in different production and decay channels

Spin and parity

Spin and parity in $H \rightarrow \gamma \gamma, H \rightarrow ZZ$ and $H \rightarrow WW$ ATLAS: 20/fb @ 8 TeV <u>arXiv:1307.1432</u>

CMS: 20/fb @ 8 TeV <u>CMS PAS HIG-13-002</u> H→ZZ

CMS: 20/fb @ 8 TeV <u>CMS PAS HIG-13-016</u> H→γγ

L. Masetti - 02/08/13

Entries / 0.2 52 57

15

10

5

0

-1

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Signature based searches

The ideal search:

- Covers many signatures
- is model
 independent
- + can be used to test future models

We searched... and we set limits on benchmark models

L. Masetti - 02/08/13

32

Latest results from the LHC

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Low mass dijet resonances

Dijet resonances associated with a vector boson ATLAS: 20/fb @ 8 TeV <u>ATLAS-CONF-2013-074</u>

ℓvjj and ℓℓjj topologies
 Background modelling checked in orthogonal control regions
 Template fit in the dijet mass distribution
 Limits on the ρ_T→Vπ_T cross section in the Low Scale TechniColor (LSCT) model
 CDF excess is excluded

 $m(\pi_{\rm T}) > 180 \text{ GeV} @ 95\% \text{ CL}$

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

IGU

Boosted W and Z

W/Z tagged dijet resonances CMS: 20/fb @ 8 TeV **CMS PAS EXO-12-024** Vector boson identification with jet substructure techniques Dark matter pair production with single W/Z tagged jets ATLAS: 20/fb @ 8 TeV ATLAS-CONF-2013-073 Single boosted vector boson with large missing transverse momentum World's strongest limit in a model with **up-down interference**

Process	Observed Mass Exclusion(TeV)		
	8 TeV	7 TeV	
$q^* \rightarrow qW$	[1.00, 3.23]	[1.00, 2.38]	
$q^* \rightarrow qZ$	[1.00, 3.00]	[1.00, 2.15]	
$G_{RS} \rightarrow WW$	[1.00, 1.59]	NA	
$G_{RS} \rightarrow ZZ$	[1.00, 1.17]	NA	
$W' \rightarrow WZ$	[1.00, 1.73]	NA	

Vector-like quarks

TT production with $T \rightarrow bW$, tZ and tH decays CMS: 20/fb @ 8 TeV CMS PAS B2G-12-015 Combined limits on T mass ATLAS: 14/fb @ 8 TeV ATLAS-CONF-2013-018 ATLAS-CONF-2013-051 ATLAS-CONF-2013-056 ATLAS-CONF-2013-060 Each analysis sensitive to one decay channel Limits superimposed

UNIVERSITÄT MAINZ

SUSY searches

Very strong limits on CMSSM

Moving on to Simplified Models and "Natural SUSY" scenarios

Summary of CMS SUSY Results* in SMS framework EPSHEP 2013

Cluster of Excellence

L. Masetti - 02/08/13

Direct stop-pair production

Summary

- Great performance of the LHC and of the detectors in the first 3 years of running
- Plenty of results already published, more in preparation
- Unprecedented precision in flavour physics, some tensions are gone, some new ones appear, some small ones remain
- Top quarks being investigated with very high statistics, still a lot to learn on modelling in simulation
- Entering precision measurements phase in Higgs physics
- Searches for new particles beyond the Standard Model could only set limits, very stringent ones... Did we forget to look for any signature?

39

Outlook

- Accelerator complex, detector and software(!) consilidation during long shutdown until end of 2014
- Sensitivity to new physics will increase with larger centre of mass energy
- Harsher experimental conditions (higher pile-up!)
- The next year will be needed to complete precision measurements, but also to prepare for run 2
- Will new physics be really around the corner this time?

