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Outline

Motivation and introduction to the density of states method as a way
to study QCD at nonzero chemical potential

The density: distribution of the complex phase:
When is it Gaussian?
When are there corrections?
How large are they?

I Hadron resonance gas model
I Strong coupling expansion

Lattice studies (WHOT-QCD)

See also plenaries of C. Gattringer and K. Szabo
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QCD phase diagram goal of current RHIC experiments
[STAR Collaboration - arXiv:1007.2613]

The finite density QCD phase
diagram is under investigation
by both theorists and
experimentalists.

One of the questions which
both would like to address is
the existence, and if so
location, of a possible critical
end point in the µ,T -plane.

See also talks of S. Borsanyi,
C. Schmidt, and K. Szabo.
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Theoretical approaches - hindered by sign problem

The sign problem is a consequence of a real, non-zero quark chemical
potential µ. /D is Hermitian and has purely real eigenvalues.
Since {γ5, /D} = 0 and {γ5, γ0} = 0,

(i /D + γ0µ)γ5ψ = −γ5(i /D + γ0µ)ψ .

so the fermion determinant resulting from integration over ψ can be
written as

det(i /D + γ0µ+ m) ≡ 1

2
det[(i /D + γ0µ+ m)(−i /D − γ0µ+ m)]

=
1

2
det[−(i /D + γ0µ)2 + m2]

≡ re iθ .

Sign problem:

=⇒
When µ 6= 0 the fermion determinant is complex such that
conventional lattice simulations using importance sampling are
not possible.
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Histogram method - A way to avoid the sign problem?
[Ejiri et al. - Phys.Rev. D82 (2010) 014508 [arXiv: 0909.2121]]

A cumulant expansion of the average phase is used by WHOT-QCD to
avoid the sign problem.

〈e iθ〉X = exp

[
−1

2
〈θ2〉c +

1

4!
〈θ4〉c − ...

]
with

〈θ2〉c = 〈θ2〉X ,
〈θ4〉c = 〈θ4〉X − 3〈θ2〉2X ,

...

Notice that 〈e iθ〉X is real and positive. So the sign problem is either gone,
or has relocated into the higher order cumulants. One must check that the
cumulant expansion converges.

See also talk of S. Ejiri.

The technique of WHOT-QCD is to approximate the expansion by the first
cumulant 〈θ2〉c . This corresponds to a Gaussian distribution of the complex
phase (note central limit theorem). But how large are 〈θ4〉c , 〈θ6〉c , ... ?
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What is the density, or distribution of the complex phase?
The density as a function of some fixed quantity X is defined as

ρ(X ) ≡
∫
DA δ(X − X ′) |det( /D + γ0µ+ m)|Nf e iNf θ(X

′)e−SYM .

The partition function is just the integral of the density

Z =

∫
dX ρ(X ) .

Observables can be calculated when the density is known, using

〈O〉 =
1

Z

∫
dX ρ(X )O(X ) .

Notice that ρ(X ) = Z 〈δ(X − X ′)〉.
It is convenient to consider the distribution 〈δ(X − X ′)〉, since∫

dX 〈δ(X − X ′)〉 = 1 .

=⇒ direct interpretation as a probability distribution.
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Different ways to measure the complex phase
WHOT-QCD calculates

〈e iθ〉P,F =
〈δ(P ′ − P)δ(F ′ − F )e iθ(F

′,P′)〉pq
〈δ(P ′ − P)δ(F ′ − F )〉pq

,

and
〈δ(P − P ′)δ(F − F ′)〉 = 〈e iθ〉P,F 〈δ(P − P ′)δ(F − F ′)〉pq ,

where P is the average plaquette, and F ≡ Nf ln

∣∣∣∣det( /D+γ0µ+m)

det( /D+m)

∣∣∣∣,
and pq refers to the phase-quenched theory.

We calculate

〈e iNf θ
′〉pq =

1

Zpq

∫
DA e iNf θ

′ |det( /D + γ0µ+ m)| e−SYM ,

and

〈δ(θ − θ′)〉 =
Zpq

Z
e iNf θ〈δ(θ − θ′)〉pq .

Warning:
We hope to draw some analogies between our work
and that of WHOT-QCD but they will be qualitative.
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Moments of the complex phase
[Lombardo, Splittorff, Verbaarschot - Phys.Rev. D80 (2009) 054509 [arXiv:0904.2122]]

The distribution can be calculated analytically from the Fourier transform

〈δ(θ − θ′)〉 = 2

∫ ∞
−∞

dp

2π
e−2ipθ〈e2ipθ′〉 .

We just need to calculate the moments

〈e2ipθ′〉 =
ZYM

Z

〈
detp( /D + γ0µ+ m)

detp( /D − γ0µ+ m)
detNf ( /D + γ0µ+ m)

〉
YM

,

which we get using the

hadron resonance gas model

lattice strong coupling + hopping expansion
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Gaussian or not?

1. Hadron resonance gas

〈e2ipθ′〉pq = exp[−p2x1] ,

=⇒ the distribution is gaussian!

〈δ(θ − θ′)〉pq = 2

∫ ∞
−∞

dp

2π
e−2ipθe−p

2x1 =
1√
πx1

e−θ
2/x1 .

2. Strong coupling expansion

〈e2ipθ′〉pq = exp[−p2x1 −p4x2 − p6x3 − ... ] ,

=⇒ the distribution has corrections!

〈δ(θ − θ′)〉pq = 2

∫ ∞
−∞

dp

2π
e−2ipθe

−p2x1 −p4x2 − p6x3 − ... .
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Cumulants: xn

The cumulant expansion of the moments takes the form

ln〈e2ipθ′〉pq =
∞∑
n=1

(2ip)n

n!
〈θn〉c .

Plugging in our expression from the strong coupling expansion
〈e2ipθ′〉pq = e−p

2x1−p4x2−... shows that each cumulant corresponds to one
of the xn,

xn = −(2i)2n

(2n)!
〈θ2n〉c .

These are simply added to obtain − ln〈e2iθ′〉pq.

=⇒ It is necessary that x1 � x2, x3, x4, ...
for the gaussian approximation to succeed.
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Hadron resonance gas

To obtain the moments from the HRG we must calculate

〈e2ipθ′〉 =
ZYM

Z

〈
detp( /D + γ0µ+ m)

detp( /D − γ0µ+ m)
detNf ( /D + γ0µ+ m)

〉
YM

.

Notice that this vev corresponds to a partition function of a theory with
p + Nf quarks, and p “ghost quarks” from the det in the denominator.

To obtain the expectation value it is necessary to compute the spectrum
of the quarks and ghost quarks, which proceeds in precisely the same
way as calculating the hadron spectrum of the standard model.

See also talk of C. Schmidt.
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Hadron resonance gas - spectra
[Amsler, DeGrand, Krusche - Quark Model review for the Particle Data Group]

Our calculation of the moments 〈e2ipθ′〉 includes all possible spectral
combinations of mesons with spin 0 and 1, and baryons with spin 1

2 and 3
2

for 2p + Nf flavors.

The contributions are
obtained by
decomposing

n⊗ n⊗ n ,

and
n⊗ n̄ ,

where n is the fundamental

representation, from

SU(2(2p + Nf )) to

SU(2p + Nf )× SU(2)spin.
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Hadron resonance gas - results
To obtain 〈e2ipθ′〉, add up the free energies from all possible hadronic
states. Assuming they are free, these are, for mesons and baryons

FM
g (µI ) = −g m

2
MT 2

π2

∞∑
n=1

1

n2
K2(nmM/T ) cosh [2nI3µIβ] ,

FB
g (µB − 2I3µI ) = g

m2
BT

2

π2

∞∑
n=1

(−1)n

n2
K2(nmB/T ) cosh [(µB − 2I3µI )nβ] ,

with spin degeneracy g = 2s + 1.

Noting that each ghost quark contributes a factor of −1 to the free
energy, and −µ to the chemical potential, the result is

〈e2ipθ′〉pq = e−p
2x1 with x1 = FM(2µ)− FM(0) + FB(3µ)− FB(0) .

where FM(µ) = kM
[
FM
1 (µ) + FM

3 (µ)
]
,

and FB(µ) = kB
[
2FB

2 + FB
4 (µ)

]
.

=⇒ The higher order cumulants are zero.
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Taylor expansion - simulations needed
It is in principle possible to have higher order cumulants. This can be seen
by performing a Taylor expansion of log〈e2ipθ′〉 around µ/T = 0.

Defining M(µ) ≡ det( /D + γ0µ+ m) and D(n)(µ) ≡ ∂n

∂(µ/T )n
M(µ)p+Nf

M(−µ)p ,

log

[
ZYM

Z

〈
M(µ)p+Nf

M(−µ)p

〉
YM

]
=

1

2!

( µ
T

)2 [ 〈D(2)(0)〉YM
〈M(0)Nf 〉YM

]

+
1

4!

( µ
T

)4 [ 〈D(4)(0)〉YM
〈M(0)Nf 〉YM

− 3
〈D(2)(0)〉2YM
〈M(0)Nf 〉2YM

]

+
1

6!

( µ
T

)6 [ 〈D(6)(0)〉YM
〈M(0)Nf 〉YM

− 15
〈D(2)(0)〉YM〈D(4)(0)〉YM

〈M(0)Nf 〉2YM
+ 30

〈D(2)(0)〉3YM
〈M(0)Nf 〉3YM

]
+O

( µ
T

)8
− log

[
Z

ZYM

]
.

Evaluating the derivatives and collecting terms with like powers of p results
in a series of special relationships which must hold to make x2, x3, ... = 0.

For example, to make x2 = 0 at O( µT )4 it is required that

〈M(0)Nf 〉YM〈M(0)Nf−4M ′(0)4〉YM = 3〈M(0)Nf−2M ′(0)2〉2YM (check?) 14



Lattice strong coupling expansion
[Langelage, Lottini, Philipsen - JHEP 1102 (2011) 057[arXiv:1010.0951]]

After integrating out the spatial link variables the lattice Yang-Mills
partition function can be simplified by using the character expansion

ZYM =

∫
SU(Nc )

∏
z

dWz

∏
〈xy〉

[
1 +

∑
R

λR
[
χR(Wx)χR(W †

y ) + χR(W †
x )χR(Wy )

]]
.

χR(Wx) = TrR(Wx) are characters of Polyakov lines Wx =
∏Nτ
τ=1 U0(x, τ).

The
∑
〈xy〉 is over nearest neighbor sites.

The λR are expansion parameters in powers of 1
g2Nc

. We work at leading
order, which includes only the fundamental representation, no higher
dimensional representations or decorations, such that

e−SYM → 1 + λ1
∑
〈xy〉

[
tr(Wx)tr(W †

y ) + tr(W †
x )tr(Wy )

]
,

with λ1 =
(

1
g2Nc

)Nτ

.
See also talks of J. Langelage, M.
Neuman, and W. Unger.
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Hopping expansion - static quark limit
[Langelage, Lottini, Philipsen - JHEP 1102 (2011) 057[arXiv:1111.4953]]

The fermion determinant can be approximated in the static, heavy quark
limit by the hopping expansion

log det( /D + γ0µ+ m) = a1h[eµ/TTrWx + e−µ/TTrW †
x ]

+ a2h
2[e2µ/TTr(W 2

x ) + e−2µ/TTr(W †2
x )] + ... .

For Wilson fermions

an = 2
(−1)n

n
, h = (2κf )Nt , κf =

1

ma + d + 1
.

By calculating the moments 〈e2ipθ′〉, we obtain the leading order
contribution to the xn, which is at least O(h2n).

At O(λ01), we calculate the leading order to x1, ..., x6.
At O(λ1), we compute the leading order to x1, ..., x3.

In both cases the calculations are performed in the confined phase.

See also talks of J. Langelage and M. Neuman.
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Homework: Calculating vevs of Polyakov lines in the
confined phase

At each order, all contributions which result in color singlets must be
obtained. We define Pn = Tr(W n

x ), P∗n = Tr(W †n
x ). Here are some

example vevs which appear in the calculations.

〈P1P
∗
1 〉YM = singlets in 3⊗ 3̄ = 1 ,

〈P2
1P
∗2
1 〉YM = singlets in 3⊗ 3⊗ 3̄⊗ 3̄ = 2 ,

〈P3
1 〉YM = singlets in 3⊗ 3⊗ 3 = 1 ,

〈P4
1P
∗
1 〉YM = singlets in 3⊗ 3⊗ 3⊗ 3⊗ 3̄ = 3 ,

〈P2P1〉YM = 〈(P2
1 − 2P∗1 )P1〉YM = −1 ,

...

Note that the third and fourth vevs only contribute for SU(3), and that
the last is −2 when Nc =∞.
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Strong coupling results in the confined phase
O(λ01)

Nc = 3 Nc =∞
x1 4a21h

2 sinh2(µ/T ) +O(h3) ”

x2 4h5 sinh4(µ/T ) cosh(µ/T )
[
8a31a2 − a51Nf

]
Ns +O(h6) 0 +O(h6)

x3 −8
9Nsa

6
1h

6 sinh6(µ/T ) +O(h7) 0 +O(h7)

x4 −44
45Nsa

8
1h

8 sinh8(µ/T ) +O(h9) 0 +O(h9)

x5 −112
225Nsa

10
1 h10 sinh10(µ/T ) +O(h11) 0 +O(h11)

x6
3488
14175Nsa

12
1 h12 sinh12(µ/T ) +O(h13) 0 +O(h13)

O(λ1)

Nc = 3 Nc =∞
x1 0 +O(h3) 0 +O(h3)

x2 −24λ1Nsa
4
1h

4 sinh4(µ/T ) +O(h5) 0 +O(h5)

x3 −80λ1Nsa
6
1h

6 sinh6(µ/T ) +O(h7) 0 +O(h7)

The presence of xn 6= 0 for n > 1 implies that there are non-zero higher
order cumulants, unless Nc = ∞. Also, they should become more
significant with increasing µ/T or β, or decreasing m.
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Strong coupling Results - Cumulants
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Even though the higher order
cumulants, xn, are non-zero at strong
coupling they are small compared to
x1 in the regime of validity of the
hopping expansion h eµ/T � 1, in
the limit λ1 → 0 (β → 0).

The plots include all contributions of
x1, x2, up to O(h6) at O(λ01), and
the leading order contributions to
x3, ..., x6.

Are the higher order cumulants ever
significant compared to x1? This is
a question that should be addressed
in simulations.
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Strong coupling Results - Distribution
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Calculating 〈δ(θ − θ′)〉pq from the
cumulants gives a distribution which
is indistinguishable from a gaussian
by eye.

However, there are O( 1
V ) corrections

which are made visible by calculating
the difference

〈δ(θ − θ′)〉pq − g(θ)

g(θ)
,

where g(θ) = 1√
πx1

e−x1θ
2

is the

gaussian distribution.
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What if higher order cumulants were significant?

0

0.002

0.004

0.006

0.008

-200 -100 0 100 200
θ

hypothetical
x1 ≡ 3896
x2 ≡ −1272
x3 ≡ −103

〈δ(θ − θ′)〉pq

g(θ)

-4e-07

-2e-07

0e+00

2e-07

4e-07

6e-07

-200 -100 0 100 200
θ

hypothetical
x1 ≡ 3896
x2 ≡ −1271
x3 ≡ −103

〈δ(θ − θ′)〉pq − g(θ)

If we choose hypothetical values of
the cumulants x1, x2, ..., such that
x2
x1

is more significant we find that
the distribution still appears
indistinguishable from a gaussian.

Considering the difference

〈δ(θ − θ′)〉 − g(θ) ,

it is clear that the distribution
contains corrections which are O( 1

V ).
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WHOT-QCD Results - Cumulants (Heavy quarks)
[Fig. 5 in PoS LATTICE2011 (2011) 214 [arXiv:1202.6113] - Saito et al.]

Cumulants

Green = 〈θ2〉c ,

Red = 〈θ4〉c .

unimproved Wilson quark action

heavy quark limit

243 × 4 lattice
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WHOT-QCD Results - Histograms (Light quarks)

[Fig. 3 in PoS LATTICE2011 (2011) 208 [arXiv:1111.2116] - Nakagawa et al.]

-5 -4 -3 -2 -1 0 1 2 3 4 5
θ = Nf Im [ln det M(µ)]

0

0.1

0.2

0.3

0.4

0.5

n
o
rm

al
iz

ed
 h

is
to

g
ra

m µ=µ0=0.4T

β=1.50

B
θ
4=2.96(23)

-40 -30 -20 -10 0 10 20 30 40
θ = Nf Im [ln det M(µ)]

0

0.01

0.02

0.03

0.04

0.05

n
o
rm

al
iz

ed
 h

is
to

g
ra

m µ=µ0=2.4T

β=1.50

B
θ
4=3.00(35)

-5 -4 -3 -2 -1 0 1 2 3 4 5
θ = Nf Im [ln det M(µ)]

0

0.1

0.2

0.3

0.4

0.5

no
rm

al
iz

ed
 h

is
to

gr
am µ=µ0=0.4T

β=1.70

Bθ
4=2.93(19)

-40 -30 -20 -10 0 10 20 30 40
θ = Nf Im [ln det M(µ)]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

n
o
rm

al
iz

ed
 h

is
to

g
ra

m µ=µ0=2.4T

β=1.70

Bθ
4=3.03(22)

Phase quenched
distribution of the
complex phase.
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WHOT-QCD Results - Binder cumulant (Light quarks)
[Fig. 2 in Phys.Rev. D77 (2008) 014508 [arXiv:0706.3549] - Ejiri]
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The the 4th cumulant in expansion of

〈e iNf θ〉 is defined by

〈θ4〉c = 〈θ4〉 − 3〈θ2〉2 .

The 4th Binder cumulant is the ratio

Bθ4 ≡
〈θ4〉
〈θ2〉2 .

=⇒ Bθ4 = 3 if 〈θ4〉c = 0.

163 × 4 lattice

Notice, Bθ4 will always go to 3 in the large volume limit.
〈θ4〉c = (Bθ4 − 3)〈θ2〉2 = O(V ), and 〈θ2〉2 = O(V 2). Therefore

Bθ4 − 3 = O
(

1

V

)
=⇒ Calculate 〈θ4〉c directly .
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WHOT-QCD Results - Cumulants (Light quarks)

[Fig. 4 in PoS LATTICE2011 (2011) 208 [arXiv:1111.2116] - Nakagawa et al.]
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Conclusions

Corrections to a Gaussian approximation of the distribution of the
complex phase are present at large quark mass and coupling strength.
These appear to grow as the quark mass and the coupling strength
decrease.

The higher order cumulants are O(V ) in log〈e iNf θ〉pq but they are
suppressed by O( 1

V ) in the distribution 〈δ(θ − θ′)〉pq, so it appears
very gaussian in the confined phase. Also, the Binder cumulant Bθ4
will only have O( 1

V ) corrections.

Therefore, in simulations where the gaussian approximation is used it
is important to calculate the higher order cumulants directly to
determine if they small enough to neglect.
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Thanks for your attention!

Special thanks to Hana Saito and Shinji Ejiri of WHOT-QCD for
correspondence.
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