$\pi^0 \to \gamma \gamma$ and chiral anomaly on the lattice

Xu Feng (KEK)

work with S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko, J. Noaki and E. Shintani on behalf of JLQCD collaboration

Lattice 2013 @Mainz, July 30th, 2013

 $\pi^0 \to \gamma \gamma$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\pi^0 \to \gamma \gamma$$

• π^0 decay into $\gamma\gamma$ with a branching rate of 98.8%

• $\pi^{\rm 0} \to \gamma \gamma$ process is described by transition amplitude

 $\langle \gamma(\mathbf{p}_1,\lambda_1)\gamma(\mathbf{p}_2,\lambda_2)|\pi^0(\mathbf{q})\rangle$

• integrating out the $\gamma\text{-field}$

 $M_{\mu
u}(p_1,p_2) = \langle 0|J_{\mu}(p_1)J_{
u}(p_2)|\pi^0(q)
angle \equiv \epsilon_{\mu
ulphaeta}p_1^{lpha}p_2^{eta}\mathcal{F}_{\pi^0\gamma\gamma}(m_{\pi}^2,p_1^2,p_2^2)$

decay width is given by

$$\Gamma_{\pi^0\gamma\gamma} = \frac{\pi \alpha_e^2 m_\pi^3}{4} \mathcal{F}_{\pi^0\gamma\gamma}^2(m_\pi^2, 0, 0)$$

Xu Feng (KEK)

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

History of $\pi^0 \to \gamma \gamma$

- early theoretical work [Sutherland & Veltman, 1967]
 - using PCAC relation $\Rightarrow \mathcal{F}_{\pi^0\gamma\gamma}(0,0,0) = 0$
 - pion should not decay, but experimentally it decays!
- paradox is solved by existence of chiral anomaly (ABJ anomaly)
 - considering quantum fluctuation, PCAC relation has to be modified

Anomaly leads to

$$\mathcal{F}_{\pi^0\gamma\gamma}(0,0,0) = rac{N_c}{12\pi^2 F_\pi} \quad \Rightarrow \quad \Gamma_{\pi^0\gamma\gamma} = 7.76 \; \mathrm{eV}$$

- PrimEx@Cornell (1974) measured $\Gamma_{\pi^0\gamma\gamma} = 7.92(42)$ eV
 - stringent test for existence of anomaly
 - one of the evidences for $N_c = 3$

Current motivation

- PrimEx@JLab: $\Gamma_{\pi^0\gamma\gamma} = 7.82(22)$ eV [PrimEx, PRL106, 2011]
 - Precision: $2.8\% \rightarrow 1.4\%$ (projected goal)
 - Benchmark test of chiral anomaly in QCD
- may help to determine muon g-2, as it dominates the contribution to hadronic light-by-light scattering

Lattice calculations on $\pi^0(\eta, \eta') \rightarrow \gamma \gamma$

- past lattice work on $\pi^0 \rightarrow \gamma \gamma$
 - Cohen, Lin, Dudek, Edwards [LAT 08]
 - Shintani et.al., JLQCD collaboration [LAT 09, 10]
 - Lin, Cohen [Confinement X, 2012]
 - Feng et.al. JLQCD collaboration [PRL, 2011] (*)
- $\eta, \eta' \to \gamma \gamma$ is also related to anomaly
 - work by Ottnad, Michael and Urbach, ETM collaboration

Lattice QCD and chiral anomaly

э

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Anomaly on the lattice

- Conventional fermion formulation, e.g. Wilson, break chiral symmetry
 - No conserved current: $\partial_{\mu}A_{\mu} 2mP \neq 0$
 - Non-zero term yields anomaly in continuum limit [Karsten, Smit, 1981]
- Ginsparg-Wilson fermions \Rightarrow modified chiral symmetry on the lattice

$$\delta \bar{\psi} = i \alpha \bar{\psi} (1 - aD/2) \gamma_5, \quad \delta \psi = i \alpha \gamma_5 (1 - aD/2) \psi$$

 under chiral transformation, measurement of fermion fields produce a Jacobian [Adams 98, Hasenfratz et.al. 98, Lüscher 98, Fujikawa 98]

$$\mathcal{D}\bar{\psi}'\mathcal{D}\psi' = \mathcal{J}\mathcal{D}\bar{\psi}\mathcal{D}\psi, \quad \mathcal{J} = \exp[-i\mathrm{Tr}\;\alpha\gamma_5 D] \neq 1$$

• if gauge configuration is sufficiently smooth \Rightarrow chiral anomaly

$$\frac{1}{2} \text{Tr } \gamma_5 D = \frac{1}{32\pi^2} \epsilon_{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta}$$

ロト (雪) (油) (モ)

Lattice setup

- we are using overlap fermion to test the chiral anomaly
 - $\blacktriangleright\,$ at $a\sim 0.1$ fm, gauge field is far from smooth \Rightarrow chiral anomaly may not be guaranteed
- $m_u = m_d$, neglect the small isospin breaking effect at this moment
- all-to-all propagator to construct correlator + disconnected diag.
- calculation of $\pi^0 \to \gamma \gamma$ is nontrivial
 - γ is not an asymptotic state of QCD
 - conventional method to extract the eigenstate fails
 - 1^{--} interpolating operator yields vector meson rather than γ
- new method is needed

イロト 不得 とくほ とくほう 二日

Analytic continuation method

(人間) トイヨト イヨト

From $\pi^0 \rightarrow \gamma \gamma$ to photon vacuum polarization

 γ

•
$$\pi^0 \to \gamma \gamma$$
 has non-QCD final state

$$\pi^{0} \longrightarrow \int \int d^{4}x \ e^{ip_{1}x} \langle 0|T\{J_{\mu}(x)J_{\nu}(0)\}|\pi^{0}(q)\rangle$$

$$\Rightarrow M_{\mu\nu}(p_{1},p_{2}) = \int d^{4}x \ e^{ip_{1}x} \langle 0|T\{J_{\mu}(x)J_{\nu}(0)\}|\pi^{0}(q)\rangle$$

• a simpler case: photon hadronic vacuum polarization (HVP)

白 医水理 医水黄 医水黄 医二黄

Analytic continuation in the HVP

• HVP function in Euclidean space-time

$$\Pi_{\mu
u}(p)=\int d^4x\;e^{ipx}\langle 0|T\{J_\mu(x)J_
u(0)\}|0
angle$$

• what we use (proposed by Ji & Jung, 2001)

$$\int dt \ e^{\omega t} \int d^3 \vec{x} \ e^{i \vec{p} \vec{x}} \langle 0 | T\{J_\mu(x) J_\nu(0)\} | 0 \rangle$$

- $p_0 \rightarrow -i\omega$: analytic continuation
- $\blacktriangleright~\omega$ means photon energy, input by hand, thus can be tuned continuously
- $p^2 = \omega^2 \vec{p}^2$, both space-like and time-like
- worry about e^{ωt} divergent for large t?
 - * $\langle 0 | T \{ J_{\mu}(t) J_{\nu}(0) \} | 0 \rangle$ exponentially decreases as $e^{-E_V t}$
 - \star an important constraint: $\omega < {\cal E}_V$ or $p^2 = \omega^2 - \vec{p}^2 < M_V^2$
- demonstration of the method: see also [XF, Hashimoto, Hotzel, Jansen, Petschlies, Renner, arXiv:1305.5878]

Results for HVP function

analytic continuation: p² = ω² - p², p discrete but ω continous
more details: poster by Karl Jansen [LAT 13]

Back to $\pi^0 \rightarrow \gamma \gamma$

Analytic continuation in $\pi^0 \rightarrow \gamma \gamma$

- observable: $M_{\mu\nu}(p_1, p_2) = \int d^4x \; e^{ip_1x} \langle 0 | T\{J_{\mu}(x)J_{\nu}(0)\} | \pi^0(q) \rangle$
- analytic continuation

$$\begin{split} M_{\mu\nu}(p_1,p_2) &= \lim_{t_{1,2}-t_{\pi}\to\infty} \frac{1}{\frac{\phi_{\pi,\vec{q}}}{2E_{\pi,\vec{q}}}} \int dt_1 \; e^{\omega(t_1-t_2)} C_{\mu\nu}(t_1,t_2,t_{\pi}) \\ C_{\mu\nu}(t_1,t_2,t_{\pi}) &\equiv \int d^3\vec{x} \; e^{-i\vec{p}_1\cdot\vec{x}} \int d^3\vec{z} \; e^{i\vec{q}\cdot\vec{z}} \langle 0| T\{J_{\mu}(\vec{x},t_1)J_{\nu}(\vec{y},t_2)\pi^0(\vec{z},t_{\pi})\}|0\rangle \end{split}$$

- ▶ large $t_{1,2} t_{\pi}$ limit to pick up pion
- $e^{\omega(t_1-t_2)}$ divergent for $t_1 > t_2$? No, suppression by $C_{\mu\nu}(t_1, t_2, t_\pi)$
- we want to study the t_1-t_2 dependence of $C_{\mu
 u}(t_1,t_2,t_\pi)$
- define amplitude $A_{\pi}(au)$

$$A_{\pi}(\tau) \equiv \lim_{t-t_{\pi}\to\infty} \frac{C_{\mu\nu}(t_1, t_2, t_{\pi})}{e^{-E_{\pi}(t-t_{\pi})}}, \quad \tau = t_1 - t_2, \quad t = \min\{t_1, t_2\}$$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Time dependence of $A_{\pi}(\tau)$

• use VMD as a guideline

• assume at large $|\tau|$, lowest states saturate

Form factor

• first photon momentum $p_1 = (\omega, \vec{p}_1)$, second one $p_2 = (E_{\pi,\vec{q}} - \omega, \vec{p}_2)$ • form factor is calculated on a curve of (p_1^2, p_2^2)

Combined fit

• fit ansatz $\mathcal{F}_{\pi^0\gamma\gamma}(m_{\pi}^2,p_1^2,p_2^2) = c_V G_V(p_1^2)G_V(p_2^2) +$

 $\sum_{m} c_{m} \left((p_{2}^{2})^{m} G_{V}(p_{1}^{2}) + (p_{1}^{2})^{m} G_{V}(p_{2}^{2}) \right) + \sum_{m,n} c_{m,n} (p_{1}^{2})^{m} (p_{2}^{2})^{n}$

- First term from VMD, $G_V(p^2) = \frac{M_V^2}{M_V^2 p^2}$ is vector meson propagator
- residual contributions are accounted for by including polynomials of $p_{1,2}^2$
- combined fit of lattice data with parameters c_V , c_0 , $c_{0,0}$, $c_{0,1} = c_{1,0}$

On-shell photon limit

• $F(m_{\pi}^2,0,0)\equiv \mathcal{F}_{\pi^0\gamma\gamma}(m_{\pi}^2,0,0)/\mathcal{F}_{\pi^0\gamma\gamma}^{\mathrm{ABJ}}$

- data with $m_{\pi}L \ge 4$: consistent with ABJ and PrimEx
- L/a = 16: smallest two quark mass, big FS effects
- expand the correlator into three hadronic matrix elements:

$$\langle J_{\mu}J_{\nu}\pi^{0}\rangle \rightarrow \langle 0|J_{\mu}|V\rangle \langle V|J_{\nu}|\pi^{0}\rangle \langle \pi^{0}|\pi^{0}|0\rangle \xrightarrow{\rightarrow} g_{V} \times g_{V\pi\gamma} \times F_{\pi_{\underline{s}}}$$

Finite-size corrections

- R_{g_V} , $R_{g_{V\pi\gamma}}$ treated by adding a correction term, $e^{-m_{\pi}L}$, to the fit
- $R_{F_{\pi}}$ treated using NNLO SU(3) ChPT
- FS correction to $F(m_{\pi}^2, 0, 0)$: $R_{F(m_{\pi}^2, 0, 0)} = R_{g_V} R_{g_{V \pi \gamma}} R_{F_{\pi}}$
- chiral extrapolation: only $m_{\pi}L > 4$ data or all data set (FS corrected) Xu Feng (KEK) $\pi^0 \rightarrow \gamma\gamma$ and chiral anomaly on the lattice 20 / 22

Results

- we check possible systematic effects
 - conventional finite-size effect
 - fixing-topology effect
 - disconnected diagram contribution (few percent)
- final results yield

$$\begin{array}{rcl} F(0,0,0) &=& 1.009(22)(29) \\ F(m_{\pi,\mathrm{phy}}^2,0,0) &=& 1.005(20)(30) \\ \Gamma_{\pi^0\gamma\gamma} &=& 7.83(31)(49) \ \mathrm{eV} \end{array}$$

ABJ anomaly and PrimEx measurement

$$egin{array}{rcl} F(0,0,0)&=&1\ F(m_{\pi,{
m phy}}^2,0,0)&=&1.004(14)\ \Gamma_{\pi^0\gamma\gamma}&=&7.82(22)~{
m eV} \end{array}$$

Conclusions

- $\pi^{\rm 0} \to \gamma \gamma$ calculation is successfully carried through
 - by analytic continuation
 - using all-to-all propagators
- chiral lattice fermion works well here
 - ABJ anomaly confirmed in the chiral limit
 - although expensive, theoretically clean formulation is helpful
- worthwhile to try other fermion formulations, large lattice volumes
- isospin breaking effect need to be understood
- extend the study to new projects, where non-QCD states are involved
 - $\blacktriangleright \ \eta, \eta' \to \gamma \gamma$

- 4 回 ト 4 三 ト - 三 - シックマ

Backup slides

э

Analysis of systematic effects

(人間) トイヨト イヨト

Lattice artifacts

• discrete data v.s. continuum case?

• disc. effects in VMD model: less than 5×10^{-4} , neglegiable

Disconnected-diagram effects

- all-to-all propagator: control error of disc. contribution
- although not significant, conn+disc systematically shift down
- precision level (3% for form factor): disc. diagram should be included

Primakoff effect

- high-energy photon interact with an atomic nucleus
- ullet at small angles this reaction is dominated by $\gamma+\gamma^*\to\pi^0$
- $\bullet ~\gamma^*$ is due to the Coulomb field of the nucleus

$\pi^0, \eta, \eta' \to \gamma^* \gamma^*$ contribution to LbyL scattering

Contribution	BPP	HKS	KN	MV	BP	PdRV	N/JN
π^0,η,η^\prime	85 ± 13	$82.7{\pm}6.4$	$83{\pm}12$	114±10	-	$114{\pm}13$	99±16
π, K loops	-19 ± 13	$-4.5{\pm}8.1$	_	_	-	$-19{\pm}19$	$-19{\pm}13$
π, K loops + other subleading in N_c	-	-	_	0 ± 10	-	-	_
axial vectors	$2.5{\pm}1.0$	$1.7{\pm}1.7$	_	22 ± 5	-	$15{\pm}10$	22 ± 5
scalars	$-6.8{\pm}2.0$	_	_	_	_	-7 ± 7	-7 ± 2
quark loops	$21{\pm}3$	$9.7{\pm}11.1$	-	-	-	2.3	$21{\pm}3$
total	83±32	89.6 ± 15.4	80±40	136 ± 25	$110{\pm}40$	105 ± 26	116 ± 39

• summary table [Jegerlehner, Nyffeler, Phys.Rept.477:1-110,2009]

- ▶ $\pi^0, \eta, \eta' \rightarrow \gamma^* \gamma^*$ contributions are consistent with total ones
- \blacktriangleright among three PS mesons, π^0 takes about ${\sim}70\%$ contribution
- ▶ calulation on the $\pi^0 \to \gamma^* \gamma^*$ is a first step towards the η , η' sector

Rho mass

